Earthquakes, and the Earth Structure
Earthquake and Seismic Waves

- Fault scarp
- Epicenter
- Wave fronts
- Focus
- Fault
P and S waves

A. P waves generated using a slinky

B. P waves traveling along the surface

C. S waves generated using a rope

D. S waves traveling along the surface

Copyright © 2006 Pearson Prentice Hall, Inc.
P-waves

Pulses of Compression in Solid and Liquid
S-waves

Shear Distortions in Solid but NOT Liquid
P-waves move through liquid: S-waves don’t
Earthquakes and Seismic Waves

- Fault scarp
- Epicenter
- Wave fronts
- Focus
- Fault
Travel-Time curves
Reflection and Refraction
Refraction: “bending” of waves as the wave passes from one medium to another.
Refraction and Head Waves

“Head Wave”: Refracted Laser path along air/water interface

Laser source

Reflected Laser path in water
Man Made Earthquakes
Refraction in the Earth

Head Waves
Finding the Mantle
Finding the Mantle

P-wave velocity
- **6 km/sec in crust**
- **8 km/sec in mantle**

- Earthquake
- 30 km
- 10 s
- 15 s
- 20 s
- 5 s
- 10 s
- 15 s
- 18 s

- Crust
- Head Wave
- Mantle
- Moho
Earthquakes and shadow zones
Finding the Core

P- and S-wave Shadow Zone
S-wave Shadow Zone

Outer core is Liquid

S-wave Shadow Zone
Compositional Layers of Earth

- Solid iron inner core (5150–6370 km)
- Liquid iron outer core (2891–5150 km)
- Mantle (40–2891 km)
- Crust (0–40 km)
Seismic Velocity structure of Earth
Seismic Velocity outer 1000 km

P-wave velocity (km/s)

Crust
Lithosphere
Low-velocity zone (LVZ)
Upper mantle
Transition zone
Lower mantle

Depth below surface (km)

FIGURE C.7

Earth: Portrait of a Planet, 2nd Edition
Copyright (c) W.W. Norton & Company
Today’s structure of the Earth

Solid iron inner core (5150–6370 km)

Liquid iron outer core (2891–5150 km)

Crust (0–40 km)

Mantle (40–2891 km)
Crust vs Whole Earth Composition

Figure 1.7
Copyright © 1998 by W.H. Freeman and Company
<table>
<thead>
<tr>
<th>Time</th>
<th>Description of Universe</th>
<th>Average temperature of Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Point sphere of infinite density</td>
<td>100 billion °C</td>
</tr>
<tr>
<td>0.01 second</td>
<td>radiant energy electrons neutrinos positrons Other fundamental particles</td>
<td>10 billion °C</td>
</tr>
<tr>
<td>1 second</td>
<td>electrons neutrinos Protons and neutrons form</td>
<td>Below 1 billion °C</td>
</tr>
<tr>
<td>1.5 to 4 minutes</td>
<td>Helium and deuterium nuclei</td>
<td></td>
</tr>
<tr>
<td>1 million years</td>
<td>Atoms form</td>
<td>A few thousand °C</td>
</tr>
<tr>
<td>1 billion years</td>
<td>Proto-galaxies</td>
<td></td>
</tr>
<tr>
<td>5 billion years</td>
<td>Primeval galaxies Quasars</td>
<td></td>
</tr>
<tr>
<td>Today, 8 to 20 billion years</td>
<td>Today's galaxies</td>
<td>-275 °C</td>
</tr>
</tbody>
</table>
Earth grows and rounds out earlier.
Homogeneous and Inhomogeneous Accretion Theories for the Differentiation of the Earth

(a) Homogeneous accretion

(b) Inhomogeneous accretion

Silicates Nickle-iron
4.5 to 4.4 Ga: Differentiation

The Iron Catastrophe
Compositional layers of the Earth

- Solid iron inner core (5150–6370 km)
- Liquid iron outer core (2891–5150 km)
- Mantle (40–2891 km)
- Crust (0–40 km)