A Brief History of Life-Cycle Assessment

Life Cycle Assessment (LCA) had its beginnings in the 1960’s. Concerns over the limitations of raw materials and energy resources sparked interest in finding ways to cumulatively account for energy use and to project future resource supplies and use. In one of the first publications of its kind, Harold Smith reported his calculation of cumulative energy requirements for the production of chemical intermediates and products at the World Energy Conference in 1963.

Later in the 1960’s, global modeling studies published in *The Limits to Growth* (Meadows *et al* 1972) and *A Blueprint for Survival* (Goldsmith *et al* 1972) resulted in predictions of the effects of the world’s changing populations on the demand for finite raw materials and energy resources. The predictions for rapid depletion of fossil fuels and climatological changes resulting from excess waste heat stimulated more detailed calculations of energy use and output in industrial processes. During this period, about a dozen studies were performed to estimate costs and environmental implications of alternative sources of energy.

In 1969, researchers initiated an internal study for The Coca-Cola Company that laid the foundation for the current methods of life cycle inventory analysis in the United States. In a comparison of different beverage containers to determine which container had the lowest releases to the environment and least affected the supply of natural resources, this study quantified the raw materials and fuels used and the environmental loadings from the manufacturing processes for each container. Other companies in both the United States and Europe performed similar comparative life cycle inventory analyses in the early 1970’s. At that time, many of the available sources were derived from publicly-available sources such as government documents or technical papers, as specific industrial data were not available.

The process of quantifying the resource use and environmental releases of products became known as a Resource and Environmental Profile Analysis (REPA), as practiced in the United States. In Europe, it was called an Ecobalance. With the formation of public interest groups encouraging industry to ensure the accuracy of information in the public domain, and with the oil shortages in the early 1970’s, approximately 15 REPAs were performed between 1970 and 1975. Through this period, a protocol or standard research methodology for conducting these studies was developed. This multi-step methodology involves a number of assumptions. During these years, the assumptions and techniques used underwent considerable review by EPA and major industry representatives, with the result that reasonable methodologies were evolved.

From 1975 through the early 1980’s, as interest in these comprehensive studies waned because of the fading influence of the oil crisis, environmental concerns shifted to issues of hazardous
and household waste management. However, throughout this time, life cycle inventory analysis continued to be conducted and the methodology improved through a slow stream of about two studies per year, most of which focused on energy requirements. During this time, European interest grew with the establishment of an Environment Directorate (DG X1) by the European Commission. European LCA practitioners developed approaches parallel to those being used in the USA. Besides working to standardize pollution regulations throughout Europe, DG X1 issued the Liquid Food Container Directive in 1985, which charged member companies with monitoring the energy and raw materials consumption and solid waste generation of liquid food containers.

When solid waste became a worldwide issue in 1988, LCA again emerged as a tool for analyzing environmental problems. As interest in all areas affecting resources and the environment grows, the methodology for LCA is again being improved. A broad base of consultants and researchers across the globe has been further refining and expanding the methodology. The need to move beyond the inventory to impact assessment has brought LCA methodology to another point of evolution (SETAC 1991; SETAC 1993; SETAC 1997).

In 1991, concerns over the inappropriate use of LCAs to make broad marketing claims made by product manufacturers resulted in a statement issued by eleven State Attorneys General in the USA denouncing the use of LCA results to promote products until uniform methods for conducting such assessments are developed and a consensus reached on how this type of environmental comparison can be advertised non-deceptively. This action, along with pressure from other environmental organizations to standardize LCA methodology, led to the development of the LCA standards in the International Standards Organization (ISO) 14000 series (1997 through 2002).

In 2002, the United Nations Environment Programme (UNEP) joined forces with the Society of Environmental Toxicology and Chemistry (SETAC) to launch the Life Cycle Initiative, an international partnership. The three programs of the Initiative aim at putting life cycle thinking into practice and at improving the supporting tools through better data and indicators. The Life Cycle Management (LCM) program creates awareness and improves skills of decision-makers by producing information materials, establishing forums for sharing best practice, and carrying out training programs in all parts of the world. The Life Cycle Inventory (LCI) program improves global access to transparent, high quality life cycle data by hosting and facilitating expert groups whose work results in web-based information systems. The Life Cycle Impact Assessment (LCIA) program increases the quality and global reach of life cycle indicators by promoting the exchange of views among experts whose work results in a set of widely accepted recommendations.
LIFE CYCLE ASSESSMENT: PRINCIPLES AND PRACTICE

By

Scientific Applications International Corporation (SAIC)
11251 Roger Bacon Drive
Reston, VA 20190

Contract No. 68-C02-067
Work Assignment 3-15

Work Assignment Manager
Mary Ann Curran
Systems Analysis Branch
National Risk Management Research Laboratory
Cincinnati, Ohio 45268

NATIONAL RISK MANAGEMENT RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO