Efficiency of conversion

 η - important metric of system performance!

What can we learn from efficiency analysis?

- What fraction of available energy is lost in the conversion
- How one device is compared to another
- ➤ What is the performance limit

Devices are compared by nominal efficiency measured at **standard conditions**[ASTM G173 guide]:

- ➤ Air temperature 25 °C
- > Irradiance of 1000 W/m² (clear sky)
- Air mass (AM) of 1.5G
- Panel oriented perpendicular to the light beam

When the exterior conditions are kept constant, measured efficiency is solely a device characteristic.

System performance data Power, voltage, current density..

Usable power density

Delivered by the conversion device

$$\eta = \frac{P_{out}}{P_{in}} \times 100\%$$

If we have solar irradiance measured and device performance data collected, we can tell at what efficiency the system operates

Irradiance

power density of solar energy flux at the energy conversion device

Solar resource data

for a specific locale at specific conditions