GEOG 485:
GIS Programming and Automation

Project 1, Part I: Modeling precipitation zones in Nebraska

PrintPrint

Suppose you're working on a project for the Nebraska Department of Agriculture and you are tasked with making some maps of precipitation in the state. Members of the department want to see which parts of the state were relatively dry and wet in the past year, classified in zones. All you have is a series of weather station readings of cumulative rainfall for 2008 that you've obtained from within Nebraska and surrounding areas. This is a shapefile of points called Precip2008Readings.shp. It is in your Lesson 1 data folder.

Precip2008Readings.shp is a fictional dataset created for this project. The locations do not correspond to actual weather stations. However, the measurements are derived from real 2008 precipitation data created by the PRISM Climate Group at Oregon State University, 2009.

You need to do several tasks in order to get this data ready for mapping:

  • Interpolate a precipitation surface from your points. This creates a raster dataset with estimated precipitation values for your entire area of interest. You've already planned for this, knowing that you are going to use inverse distance weighted (IDW) interpolation. Click the following link to learn how the IDW technique works. You've also selected your points to include some areas around Nebraska to avoid edge effects in the interpolation.
  • Reclassify the interpolated surface into an ordinal classification of precipitation "zones" that delineate relatively dry, medium, and wet regions.
  • Create vector polygons from the zones.
  • Clip the zone polygons to the boundary of Nebraska.
    Precipitation readings to an interpolated surface to a reclassified surface and vectorized zones which results in precipitation zones
    Figure 1.15 Mapping the data.

It's very possible that you'll want to repeat the above process in order to test different IDW interpolation parameters or make similar maps with other datasets (such as next year's precipitation data). Therefore, the above series of tasks is well-suited to ModelBuilder. Your job is to create a model that can complete the above series of steps without you having to manually open four different tools.

Model parameters

Your model should have these (and only these) parameters:

  1. Input precipitation readings- This is the location of your precipitation readings point data. This is a model parameter so that the model can be easily re-run with other datasets.
  2. Power- An IDW setting specifying how quickly influence of surrounding points decreases as you move away from the point to be interpolated.
  3. Search radius- An IDW setting determining how many surrounding points are included in the interpolation of a point. The search radius can be fixed at a certain distance, including whatever number of points happen to fall within, or its distance can vary in order for it to always include a minimum number of points. When you use ModelBuilder, you don't have to set up any of these choices; ModelBuilder does it for you when you set the Search Radius as a model parameter.
  4. Zone boundaries- This is a table allowing the user of the model to specify the zone boundaries. For example, you could configure precipitation values of 0 - 30000 to result in a reclassification of 1 (to correspond with Zone 1), 30000 - 60000 could result in a classification of 2 (to correspond with Zone 2), and so on. The way to get this table is to make a variable from the Reclassification parameter of the Reclassify tool and set it as a model parameter.
  5. Output precipitation zones- This is the location where you want the output dataset of clipped vector zones to be placed on disk.

As you build your model, you will need to configure some settings that will not be exposed as parameters. These include the clip feature, which is the state of Nebraska outline Nebraska.shp in your Lesson 1 data folder. There are many other settings such as "Z Value field" and "Input barrier polyline features" (for IDW) or "Reclass field" (for Reclassify) that should not be exposed as parameters. You should just set these values once when you build your model. If you ever ask someone else to run this model, you don't want them to be overwhelmed with choices stemming from every tool in the model; you should just expose the essential things they might want to change.

For this particular model, you should assume that any input dataset will conform to the same schema as your Precip2008Readings.shp feature class. For example, an analyst should be able to submit a similar Precip2009Readings dataset with the same fields, field names, and data types. However, he or she should not expect to provide any feature class with a different set of fields and field names, etc. As you might discover, handling all types of feature class schemas would make your model more complex than we want for this assignment.

When you double-click the model to run it, the interface should look like the following:

 A screen capture of the Create Precipitation Zones dialog box
Figure 1.16 The model interface.

Running the model with the exact parameters listed above should result in the following (I have symbolized the zones in ArcMap with different colors to help distinguish them). This is one way you can check your work:

 Model output with parameters shown above
Figure 1.17 The completed model output.

Deliverables

The deliverables for this project are:

  • The .tbx file of the toolbox containing your model. The easiest way to find it is to right-click your toolbox in the Catalog window, click Properties, and note the Location. If you can't browse to this path in Windows Explorer, you'll need to enable the Windows option to show hidden files and folders.
  • A screen capture of the model interface before you run the model (it should look a lot like the above image, although you can set your own reclassification values, power, etc.)
  • A screen capture of your model result in ArcMap, with zones symbolized in different colors. You don't have to use the Layout view for this project.

Successful delivery of the above requirements is sufficient to earn 90% on the project. The remaining 10% is reserved for efforts that go "over and above" the minimum requirements. This could include (but is not limited to) meaningful labels on and around model elements, analysis of how different input values affect the output, substitution of some other interpolation method instead of IDW (for example Kriging), documentation for your model parameters that appears in the side-panel help, or demonstration of how your model was successfully run on a different input dataset.  As a general rule throughout the course, full credit in the "over and above" category requires the implementation of 2-4 different ideas, with more complex ideas earning more credit.

Tips

The following tips may help you as you build your model:

  • Your model needs to include the following tools in this order: IDW (from the Spatial Analyst toolbox), Reclassify, Raster to Polygon, Clip (from the Analysis toolbox).
  • An easy way to find the tools you need in ArcMap is to click Windows > Search and type the name of the tool you want in the search box. Be careful when multiple tools have the same name. You'll typically be using tools from the Spatial Analyst toolbox in this assignment.
  • Once you drag and drop a tool onto the ModelBuilder canvas, double-click it and set all the parameters the way you want. These will be the default settings for your model.
  • If there is a certain parameter for a tool that you want to expose as a model parameter, right-click the tool in the ModelBuilder canvas, then click Make Variable > From Parameter and choose the parameter. Once the oval appears for the variable, right-click it and click Model Parameter.
  • If you receive errors that a tool is not able to run, or that no Spatial Analyst Extension is installed, you may need to enable the extension. In ArcMap, click Customize > Extensions and then check the Spatial Analyst checkbox.