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A B S T R A C T   

Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid 
and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images 
can quickly and safely provide us with spatial distribution information and statistics of the damage degree to 
assist with humanitarian assistance and disaster response. For building damage assessment, strong feature rep
resentation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional 
object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can 
guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional 
network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, 
we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage 
assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to 
generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional 
OBIA framework. Furthermore, the deep object localization network and deep damage classification network are 
integrated into a unified semantic change detection network for end-to-end building damage assessment. This 
also provides deep object features that can supply an object prior to the deep damage classification network for 
more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee 
the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 
natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata 
military barracks explosion event show that ChangeOS is superior to the currently published methods in speed 
and accuracy, and has a superior generalization ability for man-made disasters.   

1. Introduction 

Rapid and accurate building damage assessment is critical for hu
manitarian assistance and disaster response when sudden-onset di
sasters happen (Gupta et al., 2019b). However, assessing the building 
damage can be dangerous, difficult, and slow, because of the limited 
communication and transportation infrastructure. Remote sensing 
technology is a safe and efficient way to achieve building damage 
assessment. High spatial resolution (HSR) remote sensing images can 
accurately reflect the surface of the Earth, and can rapidly provide large 
area observations to support building damage assessment. When based 
on co-registered bitemporal HSR remote sensing images, building 

damage assessment can be seen as a combination of two fundamental 
sub-tasks: building localization and damage classification. Building 
localization, which is also termed building extraction, has been widely 
studied in the remote sensing field (Liu et al., 2020), the goal of which is 
to assign a unique semantic label to each pixel on the pre-disaster image 
to indicate the building area. Then based on the building localization 
results on the pre-disaster image, the damage classification involves 
assigning a unique damage level label reflecting the degree of damage to 
each building instance on the post-disaster image. 

Over the past few years, many researchers have tried to use 
moderate-resolution remote sensing images to assess building damage 
based on pixel-based and object-based land cover classification (Yusuf 
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et al., 2001; Yamazaki and Matsuoka, 2007). However, limited by the 
spatial resolution of the sensors, these methods can only assess the 
coarse building damage area. With the increases of the spatial resolution 
of the sensors, HSR remote sensing images can now be obtained to finely 
characterize the spatial details of each building instance, which makes it 
possible to assess instance-level building damage. As a result, building 
damage assessment based on HSR remote sensing images has gradually 
become the main stream approach. For example, Brunner et al. (2010) 
jointly used HSR optical and SAR images to extract building instances 
and assess instance-wise building damage via geometric parameter 
estimation for an earthquake disaster; and Tong et al. (2012) used 
IKONOS images to detect each collapsed building based on the 3D 
geometric changes for an earthquake disaster. These methods are mainly 
designed to handle the scenario of a single disaster, and they are based 
on the use of specific hand-crafted features for SAR and optical images in 
the building damage assessment (Dong and Shan, 2013). The building 
damage assessment problem is then modeled as a pre- and post-event 
change detection problem (Plank, 2014). However, the occurrence 
and the type of sudden-onset disasters are always unpredictable, and the 
design of hand-crafted features is time-consuming, which makes it 
difficult to quickly assess building damage over a wide scale for rapid 
disaster response. 

Deep learning techniques, especially deep convolutional neural 
networks (CNNs), have achieved significant improvements in the com
puter vision field, and have been successfully applied to various remote 
sensing applications, such as object detection (Cheng et al., 2016; Zhong 
et al., 2018; Zheng et al., 2020a), object segmentation (Zheng et al., 
2020c), land-use classification (Huang et al., 2018; Zhang et al., 2018, 
2019, 2020), hyperspectral image classification (Zheng et al., 2020b), 
and multi-modality all-weather mapping (Zheng et al., 2021). CNNs are 
hierarchical feature representation learning methods, which allows us to 
extract high-level features from raw image data using the data-driven 
paradigm and apply these features to downstream tasks in an 
end-to-end fashion. These characteristics can significantly accelerate the 
whole pipeline of building damage assessment after a sudden onset 
disaster (Ge et al., 2020; Koshimura et al., 2020). 

The CNN-based building damage assessment methods can be broadly 
divided into cascade network based methods and Siamese network 
based methods, from the perspective of the network architecture. The 
cascade network based approaches (Gupta et al., 2019b) use a fully 
convolutional network (FCN) for the building localization and a 
patch-based CNN for the damage classification (Valentijn et al., 2020; 
Lee et al., 2020). The whole algorithm is a two-step pipeline, where the 
first step involves predicting the pixel-wise building positions on the 
pre-disaster image using a building localization model. Then, in the 
second step, a damage classification model is applied to perform 
patch-wise building damage classification on the post-disaster image. 
For example, the xView2 baseline (Gupta et al., 2019b) implements 

building localization with a modified UNet architecture (Ronneberger 
et al., 2015) and damage classification with a two-branch ResNet-50 (He 
et al., 2016). However, the cascade network-based methods suffer from 
the knowledge gap problem between the building localization model 
and the damage classification model. These two models both need to 
recognize the buildings, but they are unable to share common knowl
edge with each other. This is because, in the cascade network based 
methods, building localization is modeled as a pixel-level classification 
task, whereas the damage classification is modeled as an image-level 
classification task. These two heterogeneous tasks respectively require 
a patch-based CNN and an FCN. To solve this problem, the Siamese 
network-based methods use the same network architecture to complete 
these two tasks by modeling them both as a pixel-level classification task 
using two FCNs. For example, Siamese-UNet (Durnov, 2020), as an 
xView2 Data Challenge (Gupta et al., 2019a) 1st place solution, uses two 
identical UNet architectures with shared weights to extract dense 
feature maps from the last decoder block for the pre- and post-disaster 
images. These two dense feature maps are then concatenated for 
pixel-level damage classification. Siamese-UNet adopts a two-stage 
training strategy, where it is first trained on pre-disaster images for 
the building localization, and is then trained on both pre- and 
post-disaster images for the damage classification based on the weights 
obtained in the first stage. 

Although the Siamese network based methods overcome the 
knowledge gap problem by sharing weights, they do introduce the 
semantically inconsistent damage classification problem, because of the 
pixel-level modeling, as shown in Fig. 1(d). In principle, each building 
instance has only one status, as shown in Fig. 1(c). However, many 
weaker disasters result in buildings being partially damaged, and the 
damaged areas are often much fewer than the non-damaged areas. The 
non-damaged samples still dominate the learning procedure, which re
sults in the pixel-level model only being able to accurately recognize the 
damaged area rather than an entire damaged building instance. Object- 
based image analysis (OBIA) integrated with patch-based CNN is 
commonly used to overcome this semantic inconsistency, the effective
ness of which has been widely confirmed (Blaschke, 2010; Zhang et al., 
2018; Liu et al., 2021). The patch-based CNNs integrated OBIA (Zhang 
et al., 2018, 2019, 2020; Liu et al., 2021) mainly adopt superpixel seg
mentation to generate objects, but the objects are non-semantic and of 
an irregular geometrical shape. However, in building damage assess
ment, semantic inconsistency occurs in a building object that is semantic 
and of a regular geometrical shape, which causes the problem of it being 
impossible to apply these conventional OBIA methods in building 
damage assessment. The root of the problem lies in the fact that the 
current OBIA methods are simply combined with deep learning at a 
procedure level, without feature-level interaction. 

In this paper, we propose a deep object-based semantic change 
detection framework, called ChangeOS, for building damage assessment 

Fig. 1. The semantically inconsistent damage classification problem. The red boxes indicate the partially damaged region. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Z. Zheng et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 265 (2021) 112636

3

in a disaster context using HSR bitemporal satellite images. To ensure 
that the OBIA is seamlessly integrate with the deep learning, we adopt 
an FCN to generate more accurate building objects, in place of super
pixel segmentation, and this FCN is also responsible for the pixel-level 
building localization. Furthermore, ChangeOS integrates building 
localization and damage classification into a unified framework by the 
use of a partial Siamese FCN architecture, thus achieving feature rep
resentation level interaction. ChangeOS has the key advantage that it 
can achieve end-to-end training and inference. This makes the building 
damage assessment model easy to tune and deploy, which significantly 
accelerates the whole pipeline of disaster response. The code is available 
at https://github.com/Z-Zheng/ChangeOS. 

The rest of this paper is organized as follows. Section 2 specifies the 

study area and data. Section 3 describes the details of the proposed 
framework and each component. The experimental results and a dis
cussion are provided in Section 4. Section 5 concludes the paper. 

2. Study area and data 

The experiments were conducted on a global-scale study site, as 
shown in Fig. 2(a) and two local-scale study sites, i.e., Beirut in Lebanon 
and Bata in Equatorial Guinea, as shown in Fig. 2(b) for a wide-scale 
statistical evaluation and actual application evaluation, respectively. 
In the global-scale study site, the xView2 Building Damage Assessment 
(xBD) dataset (Gupta et al., 2019a) was used for the model training and 
evaluation, and also to conduct a comprehensive ablation study for each 

Fig. 2. The global scale study area for building damage assessment in sudden-onset disaster. (a) The distribution of the disaster events at a global scale. (b) The two 
extra study sites for the out-of-the-distribution explosion events. 
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component of the proposed model. In the two local-scale study sites, 
datasets of the Beirut port explosion and the Bata military barracks ex
plosion were used to further verify the effectiveness of the proposed 
framework in real-world disaster response scenarios. 

2.1. The global-scale study-site 

A global scale study site was selected for the general building damage 
assessment. The locations of the sudden-onset disasters are shown in 
Fig. 2(a). These disasters mainly occurred in North America, Asia, and 
Australia, between 2011 and 2019. The details of these disaster events 
are presented in listed in Table 1. The disaster types include earth
quakes, fires, volcanoes, storms, flooding, and tsunamis. Beyond the 
previous application scenario of a single disaster and a local area, these 
study areas represent a real-world scenario with abundant disaster types 
and a large spatio-temporal span, which can be used to evaluate the 
generalization ability of the proposed framework. 

2.1.1. The xView2 building damage assessment (xBD) dataset 
The xBD dataset contains 22,068 HSR bitemporal optical satellite 

images collected as part of the Maxar/DigitalGlobe Open Data Program 
(https://www.digitalglobe.com/ecosystem/open-data), covering a total 
of 45,361.79 km2 and with 850,736 building instances. These optical 
satellite images have various spatial resolutions because they were 
collocated from different satellite platforms, e.g., WorldView-2 and 
WorldView-3. To assess the building damage in the multiple disaster 
types, we use the Joint Damage Scale, which was created with the help 
of the National Aeronautics and Space Administration (NASA), the 
California Department of Forestry and Fire Protection (CAL FIRE), the 

Federal Emergency Management Agency (FEMA), and the California Air 
National Guard (Gupta et al., 2019b), and is based on the HAZUS natural 
hazard analysis tool (Vickery et al., 2006), the Kelman scale (Kelman, 
2003), and the EMS-98 scale (Grünthal, 1998). The Joint Damage Scale 
includes four discrete damage levels: Non-Damage, Minor Damage, Major 
Damage, Destroyed, as the damage classification criteria. A detailed 
description of each damage level is provided in Table 2. There are 313, 
033, 36,860, 29,904, and 31,560 building instances, respectively, for the 
Non-Damage, Minor Damage, Major Damage, and Destroyed. The rest of 
the building instances are unclassified because the annotators were 
unable to identify them (Fig. 3). 

2.1.2. xBD dataset split 
The xBD dataset is officially split into three parts: train, test, and 

holdout with a split ratio of 80%/10%/10%. The training set contains 
18,336 images with 632,228 building polygons, while test set contains 
1866 images with 109,724 building polygons and hold-out set contains 
1866 images with 108,784 building polygons. Details of the xBD dataset 
are listed in Table 3. We followed the common practice and used the 
train/test/holdout sets for the training, ablation study, and bench
marking respectively. 

2.2. Study sites for the local-scale man-made disasters 

In the real world, sudden onset major disasters have diverse cate
gories and are unpredictable, which means that a robust building 
damage assessment model should have a generalization ability for the 
out-of-distribution disasters that can happen anywhere. Local-scale 
man-made disasters meet this requirement. Thus, we chose two recent 
explosion events, Beirut port explosion and the Bata military barracks 
explosion, as examples to test the effectiveness of the proposed frame
work. These two study sites are shown in Fig. 2(b). The images of these 
two datasets are shared by Maxar/DigitalGlobe Open Data Program. 
Note that these two datasets were only used as test sets to evaluate the 
generalization of the trained model. 

2.2.1. The Beirut port explosion 
Beirut is the largest city and the capital of Lebanon, and is situated on 

a peninsula at the midpoint of Lebanon’s Mediterranean coast. The 
Beirut port explosion event happened on August 4, 2020. It was caused 
by the accidental detonation of 2750 metric tons of ammonium nitrate, 
which is a common industrial chemical used in fertilizer, and is also a 
component of mining explosives. As of August 5, 2020, there were at 
least 135 people killed, around 5000 people injured and 300,000+
people displaced due to the extent of the damage (https://www.maxar. 
com/open-data/beirut-explosion). 

The pre- and post-disaster images were collected by the WorldView-2 
satellite, and were obtained on July 31, 2020, and August 5, 2020, 
respectively. These images have a spatial resolution of nearly 0.5 m and 
have off-nadir angles of 17.2◦ and 32.7◦, respectively. These images 
have been preprocessed, including orthorectification, atmospheric 
compensation, dynamic range adjustment, and pan-sharpening. We 
cropped the images using the administrative boundary vector data of the 

Table 1 
The 19 disaster events selected in the xBD dataset.  

Disaster type Disaster event Continent Event date 

Earthquake Mexico City earthquake North 
America 

Sep 19, 2017  

Wildfire Portugal wildfires Europe Jun 17-24, 2017 
Wildfire Santa Rosa wildfires North 

America 
Oct 8-31, 2017 

Wildfire Carr wildfire North 
America 

Jul 23–Aug 30, 
2018 

Wildfire Woolsey fire North 
America 

Nov 9–28, 2018 

Wildfire Pinery fire Oceania Nov 25–Dec 2, 
2018  

Volcano Lower Puna volcanic 
eruption 

Oceania May 23–Aug 14, 
2018 

Volcano Guatemala Fuego volcanic 
eruption 

North 
America 

Jun 3, 2018  

Storm Tuscaloosa, AL tornado North 
America 

Apr 27, 2011 

Storm Joplin, MO tornado North 
America 

May 22, 2011 

Storm Moore, OK tornado North 
America 

May 20, 2013 

Storm Hurricane Matthew North 
America 

Sep 28–Oct 10, 
2016 

Storm Hurricane Florence North 
America 

Sep 10-19, 2018  

Flooding Monsoon in Nepal, India, 
Bangladesh 

Asia Jul–Sep, 2017 

Flooding Hurricane Harvey North 
America 

Aug 17–Sep 2, 
2017 

Flooding, 
Storm 

Hurricane Michael North 
America 

Oct 7-16, 2018 

Flooding Midwest US floods North 
America 

Jan 3–May 31, 
2019  

Tsunami Indonesia tsunami Asia Sep 18, 2018 
Tsunami Sunda Strait tsunami Asia Dec 22, 2018  

Table 2 
Joint Damage Scale description.  

Damage 
level 

Description 

Non-damage Undisturbed. No sign of water, structural or shingle damage or burn 
marks. 

Minor 
damage 

Building partially burnt, water surrounding structure, volcanic flow 
nearby, roof elements missing, or visible cracks. 

Major 
damage 

Partial wall or roof collapse, encroaching volcanic flow or 
surrounded by water/mud. 

Destroyed Scorched, completely collapsed, partially/completely covered with 
water/mud, or otherwise no longer present.  
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whole of the city of Beirut. Each image covers an effective area of 
19.8 km2 with 16,744 × 11,880 pixels. To quantitatively evaluate the 
proposed framework, we recorded building polygons annotations and 
the damage state, which totaled 16,063 instances. 

2.2.2. The Bata military barracks explosion 
Bata is the largest city and the commercial capital of the Central 

African country of Equatorial Guinea. The Bata explosion event 
happened on March 7, 2021, killing at least 105 people and injuring 
more than 600 (https://www.maxar.com/open-data/bata-explosions). 
Almost all the buildings and homes in the city suffered huge damage. 
Officials claim that this event was caused by poorly stored explosives 
that detonated after nearby farmers conducted stubble burning. 

The pre- and post- disaster images were collected by the GeoEye-1 
satellite, on August 07, 2020, and March 09, 2021, respectively. These 
images have a spatial resolution of nearly 0.5 m and the off-nadir angles 
are 27.9◦ and 33.8◦, respectively. We chose a sub-region of the city of 
Bata to demonstrate the effectiveness of the proposed framework. Each 
image covers nearly 16 km2 with 10,033 × 8085 pixels. A total of 243 
structures appear to have either been “heavily damaged or completely 
destroyed”, according to a preliminary analysis by the United Nations 
Institute for Training and Research (https://unitar.org/maps/ma 
p/3258). We chose these data and some expert annotations to compre
hensively evaluate the performance of the proposed framework in the 
annotation of large-scale man-made disaster events. 

3. Methodology 

3.1. Problem statement: building damage assessment 

Building instance damage assessment is a hybrid task, made up of 
two subproblems: (1) building localization and (2) damage classifica
tion. The inputs and outputs of this task are shown in Fig. 4. The inputs 
are coregistered bitemporal pre- and post-disaster images. The outputs 
are a binary mask indicating the building position, and a multi-class 
mask indicating the degree of building damage. 

3.1.1. Subproblem 1: building localization 
The first step of building damage assessment is the building locali

zation, which involves locating the building positions on the pre-disaster 
image as a reference. This task takes the pre-disaster image as input and 
outputs a binary mask, where the numbers 1 and 0 respectively repre
sent whether a building exists or not. 

3.1.2. Subproblem 2: damage classification 
After establishing the building positions in the pre-disaster image, 

the degree of damage needs to be estimated for each building. Note that 
each building only has one degree of damage, as shown in Fig. 4(d). This 
means that this task outputs a multi-class mask based on the binary mask 
from Subproblem 1, where each pixel value indicates the degree of 
damage, and all the pixels of each building are semantically consistent. 

3.1.3. The relationship with semantic change detection 
Building damage assessment is highly relevant to semantic change 

detection, and can be seen as a special case of general semantic change 
detection. If we assume that there is an n-dimensional semantic category 
space for pre-change state and post-change state, then the general se
mantic change detection method needs to detect n2 categories of change. 
For building damage assessment, there is a one-dimensional semantic 
category space for the pre-change state and an n-dimensional semantic 
category space for the post-change state. Only n categories of change 
therefore need to be detected, which significantly simplifies the se
mantic change detection problem. Therefore, we refer to this special 

Fig. 3. Examples from the xBD Dataset.  

Table 3 
Statistics of the xBD dataset and the dataset split.  

Split #Images #Building polygons Usage 

Train 18,336 632,228 Training 
Test 1866 109,724 Ablation study 
Holdout 1866 108,784 Benchmarking  
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case as the one-to-many semantic change detection problem. 

3.2. ChangeOS: the deep object-based semantic change detection 
framework 

The building damage assessment can be seen as a one-to-many se
mantic change detection problem. Based on this insight, we propose the 
deep object-based semantic change detection framework (ChangeOS) 
for building damage assessment in a rapid global disaster response 
scenario using HSR bitemporal pre- and post-disaster images. The gen
eral design of ChangeOS follows the idea of OBIA, which features an 
object generation module and an object classification module. The 
whole framework consists of a deep object localization network as the 
object generation module and a deep damage classification network as 
the object classification module at the macro level, as shown in Fig. 5, 

which is constructed by four key components: (1) partial Siamese 
encoder, (2) task-aware contextual encoder, (3) multi-task decoder, and 
(4) object-based post-processing at the micro level. Compared with 
traditional object-based approach, ChangeOS is a deep object-based 
approach, which features (1) deep object generation. Deep object 
localization network which is a bottom-up instance segmentation 
method, is proposed to generate objects in place of super-pixel seg
mentation; (2) end-to-end training and inference. The object gener
ation module is integrated with the object classification module in a 
differentiable manner via deep object features; (3) consistent semantic 
within an object. The object classification is semantically consistent 
within an object. 

Differing from the conventional Siamese encoder design, we adopt a 
partial Siamese encoder design. This is because we believe that different 
tasks need different spatial context modeling. We use the partial Siamese 

Fig. 4. The building damage assessment requires the inputs (a) pre-disaster image and (b) the post-disaster image, and then outputs the results of (c) the building 
localization and (d) the damage classification. 

Fig. 5. Overview of ChangeOS framework. The key components are (a) partial siamese encoder, (b) task-aware contextual encoder, (c) multi-task decoder, and (d) 
object-based post-processing. ChangeOS directly takes bitemporal images as input, and outputs instance-level building damage assessment result, including the 
position and damage state of each building. 
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encoder to extract task-independent deep features and then use the task- 
aware contextual encoder to further extract the task-aware context to 
enhance the deep features. For multi-task prediction, we adopt a multi- 
task decoder and achieve multi-task feature interaction. Thus, the deep 
object features can guide the damage classification to achieve feature- 
level interaction. To further guarantee the semantic consistency of the 
object, we adopt object-based post-processing, which takes each object 
as the basic classification unit to adjust the predicted category of pixels 
inside an object via simple voting. These components are described in 
detail in the next sub-sections. 

3.2.1. The fully convolutional neural network (FCN) 
The fully convolutional neural network (FCN) (Long et al., 2015) is a 

variant of the convolutional neural network (CNN), and is widely used in 
semantic image segmentation. The FCN is the fundamental building 
component of the proposed ChangeOS framework. The CNN architec
ture is always stacked by multiple convolutional layers followed by 
non-linear activation and normalization, and follows a multi-stage 
design where each stage outputs a different resolution feature map. As 
the CNN goes deeper, the resolution of the feature maps gets coarser but 
with stronger semantic information (Ronneberger et al., 2015; Lin et al., 
2017). CNNs, such as AlexNet (Krizhevsky et al., 2012), VGG (Simonyan 
and Zisserman, 2014), and ResNet (He et al., 2016) have been specif
ically designed for image classification. 

To apply the CNN to a dense prediction task (e.g., semantic seg
mentation), the FCN removes the last fully connected layer in the CNN. 
This makes the FCN output feature maps with spatial layout, which is 
essential to a dense prediction task. In addition, the FCN architecture 
usually introduces the upsampling module to recover the resolution of 
the feature maps for pixel-wise prediction. The upsampling module has 
many candidates, such as a deconvolutional layer (Noh et al., 2015), 
bilinear upsampling followed by a convolutional layer (Chen et al., 
2018), nearest-neighbor upsampling followed by a convolutional layer 
(Lin et al., 2017), etc. To optimize the FCN for semantic image seg
mentation, pixel-wise cross-entropy loss is commonly used. More details 
can be found in Long et al. (2015). The proposed method belongs to the 
FCN-family. 

3.2.2. The partial Siamese encoder 
The partial Siamese encoder is an FCN-family model used to extract 

task-independent deep features for downstream tasks. For bitemporal 
optical images, we introduce a weight sharing mechanism to reuse the 
network architecture and its weight to alleviate overfitting problem. 
This is motivated by the fact that the bitemporal images belong to the 
same modality and have similar visual patterns since the pre- and post- 
disaster images were collected by the same optical sensor, but in 
different temporal phases. In this case, two independent network 
weights would produce huge and redundant parameter space, impeding 
the network training. Therefore, sharing the weights can significantly 
reduce the complexity of the parameter space to alleviate the overfitting 
problem. 

We implement the partial Siamese encoder based on ResNet (He 
et al., 2016). The vanilla ResNet is used for the image classification. By 
only keeping a stem block and four residual blocks, ResNet can be used 
as a hierarchical feature extractor. The stem block is made up of a 7 × 7 
convolutional layer with stride 2 followed by batch normalization (BN), 
rectified linear unit (ReLU) activation, and a max-pooling layer. The 
residual block is made up of many residual units. For example, the 
50-layer ResNet has 3, 4, 6, and 3 residual units for the four residual 
blocks, respectively. Each residual unit is made up of stacked 1 × 1, 
3 × 3 and 1 × 1 convolutional layers, where each convolutional layer is 
followed by BN and ReLU. A shortcut connection is also applied to the 
input and the output to solve the vanishing gradient problem. Taking a 
single-temporal image as input, the feature maps from the four residual 
blocks of ResNet are extracted for the downstream tasks. For bitemporal 
images, this forward computation is repeated twice to obtain bitemporal 

feature maps. 

3.2.3. The task-aware contextual encoder 
For different tasks, it is necessary to capture contextual information 

from different ranges. To this end, we propose a task-aware contextual 
encoder to further extract task-aware contextual information to obtain 
task-aware and context-enhanced deep features. The task-aware 
contextual encoder is made up of three upsample blocks, and for 
building localization and damage classification, the network architec
tures are identical but with different weights, as shown in Fig. 5(b). 
Similar to the feature pyramid network (FPN) (Lin et al., 2017), we also 
introduce a lateral connection to combine the high-level feature maps 
with longer range context and the low-level feature maps with finer 
spatial details. To align the spatial resolution of the low-level and 
high-level feature maps, the upsample block is designed, which is a 
nearest-neighbor upsampling layer with a scale factor of 2, followed by a 
1 × 1 convolutional layer. The pointwise addition is simply used to fuse 
the two feature maps. In this way, four task-aware and context-enhanced 
feature maps can be obtained for the subsequent multi-task decoding. 

3.2.4. The multi-task decoder 
The building localization and damage classification tasks can be both 

seen as semantic segmentation tasks in ChangeOS. For further object- 
based classification, we improve the building localization task from se
mantic segmentation to instance segmentation by a connected compo
nent labeling algorithm (Wu et al., 2005), which outputs a set of object 
polygons but can be supervised by a pixel-wise loss function. The 
multi-task decoder takes feature maps of four scales as the input and 
outputs a binary probability map to indicate the position of the buildings 
and a multi-class probability map to indicate the damage classification 
probability for each pixel. This multi-task decoder is made up of two 
identical sub-networks. 

3.2.4.1. The object localization sub-network. A simple FCN is adopted to 
perform binary segmentation, which is made up of an aggregation 
module and a bottleneck block (He et al., 2016). The aggregation 
module takes feature maps of four scales as input, which have output 
strides1 of 4, 8, 16, and 32, respectively. This module progressively 
applies 2× upsampling to each feature map until the feature maps all 
have an output stride of 4, where the upsampling operation is imple
mented by a bilinear upsampling layer and a 3 × 3 convolutional layer. 
We then sum over all the feature maps to produce a multi-scale fused 
feature map with the output stride of 4 and feature channels of 256. This 
multi-scale fused feature map is also forwarded into the damage clas
sification sub-network as deep object feature, providing the object prior. 
The bottleneck block is made up of three convolutional layers, each 
followed by batch normalization and ReLU. The kernel size of the middle 
convolutional layer is 3 × 3, while the other two are 1 × 1. Meanwhile, 
identity mapping is applied to construct a residual connection. A final 
1 × 1 convolutional layer with one output channel is attached to pro
duce the binary probability map, which is directly supervised by the 
localization loss Lloc. The final building localization map is obtained by 
4× bilinear upsampling. 

3.2.4.2. The damage classification sub-network. An identity FCN is used 
for the damage classification. In addition, the deep object feature from 
the object localization sub-network is concatenated with the classifica
tion feature to provide the object prior for modeling the temporal dif
ference. In this way, at the macro level, the deep object localization 
network is integrated with the deep damage classification network in a 
differentiable manner, thus achieving end-to-end training and inference. 

1 The output stride is defined as the ratio of the input image size to the output 
feature map size. 
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As the classification layer, a 1 × 1 convolutional layer with five output 
channels is attached, which is supervised by the classification loss Lcls. 
The final damage classification result is obtained by 4× bilinear 
upsampling and the argmax operation. 

3.2.4.3. The multi-task loss function for joint optimization. To jointly 
optimize the building localization and damage segmentation, we 
designed a multi-task loss function. The overall multi-task loss function 
is formulated as follows: 

L = Lloc + Lcls (1) 

The commonly used binary segmentation loss is a combination of 
binary cross-entropy and dice loss (Milletari et al., 2016). However, in 
this task, guaranteeing the recall of building localization is very 
important than precision, because it is a prefix task of damage classifi
cation. Therefore, dice loss is not optimal choice in this scenario. To this 
end, we replace the dice loss with Tversky loss based on the Tversky 
index (Tversky, 1977), which can control the trade-off between recall 
and precision by two hyperparameters. Thus, our building localization 
loss Lloc is the sum of the binary cross-entropy loss and Tversky loss: 

Lloc(p, y, α, β) =
1
N

Lbce(p, y) + Ltver(p, y, α, β)

= −
1
N
(ylog(p) + (1 − y)log(1 − p))

+1 −

∑N

i=1
piyi

∑N

i=1
piyi + α

∑N

i=1
(1 − pi)yi + β

∑N

i=1
pi(1 − yi)

0 ≤ α, β ≤ 1
(2)  

where p and y denote the predicted class probability and ground truth. α 
and β are hyperparameters introduced by the Tversky loss function to 
control the penalizing ratio for the false negatives and false positives, 
respectively. We set α to 0.9 and β to 0.1, because the recall of the 
building localization is more significant than precision in building 
damage assessment. 

For the damage classification loss Lcls, we use multi-class cross-en
tropy loss: 

Lcls(p, y) = −
1
N

ylog(p) (3)  

3.2.5. Object-based post-processing 
The building localization and damage classification obtained by the 

multi-task decoder are both the pixel-level classification results. How
ever, this pixel-level representation always causes partial damage 
recognition. For example, fire can produce burn marks on a building, 
and the burn marks may partially appear on the building roof, which 
results in that only the burn marks being recognized as minor damage, 
while the rest of the building is identified as no damage. The intrinsic 
reason for this lies in the fact that the damage degree refers to the 
property, and thus belongs to a building object rather than a pixel. This 
means that all the pixels of a building object should be semantically 
consistent. 

To adjust these semantically inconsistent building objects, we further 
propose an object-based post-processing method in the ChangeOS 
framework to make the building instance semantically consistent, 
following OBIA (Blaschke, 2010). The object-based postprocessing in
cludes two steps: (1) object proposal, and (2) object-wise weighted 
voting, as shown in Fig. 5(d). The object proposal involves extracting 
each building object in the building localization result, using a con
nected component labeling algorithm (Wu et al., 2005). The object-wise 
weighted voting algorithm then collects all the pixels of each building 
object and weights these pixels by each class to obtain a unique damage 

degree for each building object. 

4. Experiments 

4.1. Experimental settings 

4.1.1. Implementation details 
All the models were trained for 60k iterations using stochastic 

gradient descent (SGD) with a “poly” learning rate policy, where the 
initial learning rate was set to 0.03 and was then multiplied by 
(1 − 1

1− max i ter)
γ with γ of 0.9. The weight decay was set to 0.0001 and the 

momentum was set to 0.9 for the SGD. The batch size totaled 16 over 
two Titan RTX GPUs and synchronized batch normalization was adopted 
to obtain more stable statistics. Horizontal and vertical flip and random 
rotation of 90◦ ⋅ k were used for the training data augmentation. 

4.1.2. Metrics 
We use the standard xView2 metric to evaluate the results of the 

building damage assessment methods. The xView2 metric is a variant of 
the F1 score, jointly considering the localization and damage classifi
cation performance. The standard F1 score can be computed as follows: 

F1 =
2TP

2TP + FP + FN
(4)  

where TP, FP and FN are the numbers of true positive, false positive and 
false negative pixels, respectively. 

To evaluate the localization quality, the localization score Floc
1 is 

defined as a standard pixel-based F1 score for binary classification. The 
damage classification needs to classify the pixels into one of four classes: 
non-damage, minor damage, major damage, and destroyed. To evaluate 
the damage classification, for each class, a standard pixel-based F1 score 
is used. The damage classification score Fdam

1 is then computed by their 
harmonic mean, as follows: 

Fdam
1 =

4
1

Fno dmg.
1

+ 1
Fminor dmg.

1
+ 1

Fmajor dmg.
1

+ 1
Fdestroyed

1

(5) 

The overall xView2 metric can be computed by the weighted sum of 
the localization score and damage classification score, as follows: 

Foverall
1 = 0.3Floc

1 + 0.7Fdam
1 (6)  

4.2. Benchmark methods 

To evaluate the proposed framework, we adopted the xView2 base
line method (https://github.com/DIUx-xView/xView2_baseline) and 
the xView2 1st place solution method (https://github.com/DIUx-xVi 
ew/xView2_first_place) as a comparison. Because the 1st place solu
tion is based on a multi-model ensemble, for a fair comparison, we used 
the ResNet-34 based models as a comparison.  

1. UNet + ResNet, xView2 baseline. This approach follows a cascade 
pipeline of first pixel-wise locating the buildings and then patch-wise 
classifying the damage-level of the buildings. It also belongs to an 
object-based method because its basic classification unit is an object. 
UNet was used for the building localization and ResNet was used for 
the damage classification. These two models were respectively 
trained by pre-disaster images and post-disaster images.  

2. Siamese-UNet, xView2 1st place solution (four models). This 
approach adopts the UNet architecture for both the pixel-wise 
building localization and damage classification. The building local
ization UNet was first trained on pre-disaster images. The damage 
classification UNet was then trained on pre- and post-disaster image 
pairs. To overcome the knowledge gap, the damage classification 
UNet was initialized by the parameters of the building localization 
UNet before training, namely Siamese-UNet. This approach adopts a 
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multi-model ensemble strategy to improve the final performance. 
One building localization UNet and three damage classification 
UNets were used in the ensemble. 

4.2.1. Relation to xView2 1st place solution 
Here, we discuss the relations between the proposed method and 

Siamese-UNet, xView2 1st place solution from three perspectives: (1) 
Overall framework. xView2 1st place solution follows pixel-based 
framework, while the proposed method follows object-based frame
work. (2) Network architecture. xView2 1st place solution uses a UNet 
and a Siamese-UNet architecture for building localization and damage 
classification. We designed a unified partial Siamese and task-aware 
FPN-like model for joint building localization and damage classifica
tion. (3) Training strategy. xView2 1st place solution adopts a two-stage 
training pipeline, which first trains a UNet for building localization and 
then trains a Siamese-UNet for damage classification, while we adopt 
end-to-end training, which is more friendly to many real-world 
applications. 

4.3. Benchmark comparison and analysis 

The benchmark results were obtained by evaluation on the xView2 
holdout split. The results are listed in Table 4. ChangeOS with ResNet- 
50 achieves the best performance and significantly outperforms the 
other two approaches by means of the systematic technical improve
ment. Even when using a shallower feature extractor, such as ResNet-18 
or 34, ChangeOS still achieves extraordinary performance. For a fair 
comparison, we also evaluated the pixel-based ChangeOS, which is the 
standard ChangeOS without object-based post-processing. The results 
suggest that although without object-based post-processing, ChangeOS 
still can achieve competitive performances when using different back
bones, e.g., with the same backbone of ResNet-34, pixel-based 
ChangeOS achieves 74.743% Foverall

1 score, which is 3.05% higher than 
the Siamese-UNet. This confirms the superior of the proposed network 
design to other compared methods. We also benchmarked the inference 
speed. UNet+ResNet needs 14.26 s on the CPU, while the ChangeOS 
only needs 3.97–5.65 s on the CPU for a pair of pre- and post-disaster 
images. Moreover, ChangeOS features end-to-end inference, which 
makes it more suitable for GPU acceleration. With further GPU accel
eration, ChangeOS achieves a sub-second inference speed and only 
needs nearly 0.5 s on the GPU. Although the Siamese-UNet approach can 
also utilize GPU acceleration, it still costs 4.43 s on the GPU because of 
the multi-model ensemble and two-stage pipeline. This suggests that 
ChangeOS fundamentally improves the pipeline of building damage 
assessment, making the process faster and more accurate. These char
acteristics make it possible to achieve automatic and rapid building 

damage assessment for rapid disaster response. 
To explain the error source of the benchmarked methods, we present 

their confusion matrices in Fig. 6. It can be seen that UNet + ResNet fails 
to recognize the minor damage and major damage, which is the most 
common error source. Because UNet + ResNet models the damage 
classification as an image classification task, this local vector represen
tation has difficulty in characterizing the details of the building damage 
and long-range disaster context. To break this limitation, Siamese-UNet 
and ChangeOS adopt a fundamentally different feature representation, i. 
e., pixel-wise representation, which models the damage classification as 
a semantic segmentation task. By the pixel-wise representation, the 
building damage details can be more easily obtained for further analysis. 
From Fig. 6(b), it can be seen that Siamese-UNet achieves a reasonable 
classification performance over the four damage levels, but it achieves a 
poor F1 scores when compared with ChangeOS. This suggests that 
Siamese-UNet tends to recognize a large number of pixels as back
ground, which causes the relatively low recalls of the four damage 
classes. This is because Siamese-UNet uses a full weight-sharing encoder, 
which is unable to model specific context information for different tasks. 
However, minor damage recognition is still challenging, in that 
ChangeOS tends to recognize minor damage as no damage or major 
damage. This is because most minor damage belongs to partial building 
damage, such as a partially burnt building. The partially damaged area 
becomes the key factor in the damage classification, which is a potential 
roadmap for further improvement. 

The visual performance of building damage assessment is equally 
important because the assessment map product can reflect the distri
bution of the different damage-level buildings. This is important guid
ance for humanitarian assistance and disaster recovery. The visual 
results are shown in Fig. 7, which shows that ChangeOS can produce a 
more accurate and semantically consistent assessment map to reflect the 
damage level distribution due to the introduction of deep OBIA. For 
example, the tsunami resulted in many destroyed buildings and many 
buildings with major damage, but UNet-ResNet can guarantee semantic 
consistency for each object because it follows the OBIA framework. 
However UNet-ResNet is unable to accurately recognize buildings with 
major damage. Siamese-UNet can recognize some of the buildings with 
major damage, but without semantic consistency for each building. 
Benefiting from the deep OBIA framework, ChangeOS can accurately 
recognize these buildings and guarantee semantic consistency. 

4.4. Ablation study 

ChangeOS has multiple technical improvements, including: (1) end- 
to-end multi-task training and inference; and (2) the deep OBIA (deep 
object feature, object-based post-processing). To delve into ChangeOS, 
an ablation study was conducted to evaluate the contribution of the key 

Table 4 
Benchmark comparison on the xView2 holdout split. ChangeOS was evaluated with four different backbone networks. The inference time was recorded using an Intel 
(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz for the CPU time, and a Titan RTX GPU for the GPU time. The object-based ChangeOS is the standard ChangeOS. The pixel- 
based ChangeOS is the standard ChangeOS without object-based post-processing.  

Method Backbone Foverall
1 (%) Floc

1 (%) Fdam
1 (%) Damage F1 per class (%) Inference time (s)      

No Dmg. Minor Dmg. Major Dmg. Destroyed CPU GPU 

pixel-based 
Siamese-UNet ResNet-34 71.683 85.917 65.583 86.736 50.025 64.432 71.679 – 4.43 
ChangeOS ResNet-18 74.296 84.618 69.872 88.612 52.097 70.364 79.650 2.13 0.36 
ChangeOS ResNet-34 74.743 85.157 70.281 88.631 52.379 71.163 80.079 2.48 0.36 
ChangeOS ResNet-50 75.238 85.413 70.877 88.979 53.326 71.239 80.597 3.13 0.37 
ChangeOS ResNet-101 75.502 85.693 71.135 89.113 53.113 72.445 80.788 3.58 0.37  

object-based 
UNet + ResNet ResNet-50 27.681 80.932 4.860 65.281 6.593 1.606 29.922 14.26 – 
ChangeOS ResNet-18 77.110 84.618 73.892 92.378 57.407 72.541 82.624 3.97 0.49 
ChangeOS ResNet-34 77.519 85.157 74.246 92.189 58.069 72.843 82.795 4.14 0.50 
ChangeOS ResNet-50 78.569 85.413 75.635 92.656 60.138 74.180 83.449 5.01 0.51 
ChangeOS ResNet-101 78.519 85.693 75.444 92.809 59.377 74.649 83.288 5.65 0.52  
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components and the impact of the important hyperparameter of the loss 
function. We report these ablation studies by evaluation on the test 
split. 

4.4.1. End-to-end multi-task training and inference 
ChangeOS features end-to-end optimization and inference for 

building damage assessment, which is the most significant improvement 
at the system level. ChangeOS without deep object features and object- 
based post-processing can still achieve Foverall

1 scores of 66–67% with 
different backbone networks. This suggests that the network architec
ture of ChangeOS is compatible with end-to-end multi-task learning. 

4.4.2. Deep object feature for damage classification 
To ensure the contribution of the deep object feature, we compared 

ChangeOS with and without deep object feature by adding or removing 
the concatenation of this feature in the multi-task decoder. The results 
presented in Table 5 suggest that the deep object features are very 
important for the damage classification, and they significantly improve 
the damage classification Fdam

1 score by 10–12% for the four different 
backbone networks. Furthermore, there is little impact on the building 
localization Floc

1 score when these feature are forwarded from the 
localization sub-network to the damage classification sub-network to 
provide pre-disaster object prior. 

4.4.3. Object-based post-processing 
To investigate the object-based post-processing, we first evaluate 

ChangeOS with object-based post-processing but without deep object 
features. To our surprise, the Foverall

1 score shows a similar performance to 
ChangeOS with only deep object features. This means that bitemporal 
features can provide an object-prior for damage classification to make 
building instance semantics consistent. However, a natural question 
arises: whether is there a redundant object-prior from both bitemporal fea
tures and object proposal? To further validate the compatibility between 
the deep object features and object-based post-processing, ChangeOS 

with both deep object features and object-based post-processing was 
evaluated. The results listed in Table 5 suggest that these two technical 
improvements are compatible. For example, ChangeOS with a backbone 
network of ResNet-101 achieves 78.759% Foverall

1 score, where the deep 
object features bring an extra 3.378% improvement. Meanwhile, there is 
an interesting phenomenon that ChangeOS with deeper backbone 
network obtains a greater improvement, which may be because the 
deeper backbone network can obtain a more accurate object-prior from 
the building localization sub-network. For the visual performance 
analysis, the intermediate results of ChangeOS are presented in Fig. 8, 
where it can be seen that the object-based post-processing can effec
tively alleviate the semantic inconsistency when the object proposal 
module accurately extracts the building instances. 

4.4.4. The hyperparameters in the Tversky loss 
The Tversky loss function introduces two hyperparameters: α and β, 

which control the trade-off between the precision and recall. In common 
practice, β is always equal to 1 − α. Therefore, we only investigated the 
impact of hyperparameter α on the performance. We chose 10 different α 
values from 0.1 to 0.9 with an interval of 0.1 for analysis. The results are 
presented in Fig. 9. The larger α means that the trained model obtains a 
higher recall for the building localization sub-task. Intuitively, the Foverall

1 
score and damage classification Fdam

1 score are highly linearly related to 
the value of α. As α increases, the building localization Floc

1 score first 
increases and then decreases, and it achieves an optimal trade-off be
tween precision and recall when α is equal to 0.5. This means that higher 
recall for the building localization is beneficial to building damage 
assessment because building localization is an important pre-task for the 
damage classification. If a pixel is judged as true positive for the damage 
classification, it must be first predicted as a positive in the building 
localization. Therefore, the recall of the building localization sub-task is 
important for the building damage assessment. Meanwhile, the building 
damage classification sub-task has a larger weight of 0.7 in the overall 
score, which is biased to penalize the miss recognition, thereby 

cba

fed

Fig. 6. Confusion matrices for the benchmarked methods. (a) UNet+ResNet. (b) Siamese-UNet. (c) ChangeOS with ResNet-18. (d) ChangeOS with ResNet-34. (e) 
ChangeOS with ResNet-50. (f) ChangeOS with ResNet-101. 
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improving the importance of the recall of the building localization. 
Therefore, in ChangeOS, we use a α of 0.9 and a β of 0.1 as default 
hyperparameters in the Tversky loss. 

4.5. Application for local-scale man-made disasters 

In this section, we demonstrate the application of real-world building 
damage assessment for local-scale man-made disasters using the pro
posed method. We chose two recent explosion events, i.e., the Beirut 
port explosion and the Bata military barracks explosion, for the 
demonstration. 

4.5.1. Experimental settings 

4.5.1.1. Image preprocessing. These optical image products have been 
preprocessed, including orthorectification, atmospheric compensation, 
dynamic range adjustment, and pan-sharpening. For time-sensitive 
application scenarios such as rapid disaster response, there is no extra 
preprocessing applied. Therefore, there is always a misregistration 
problem for these relatively raw image pairs. This requires the model to 

handle the misregistration problem. 

4.5.1.2. Model training and inference. We trained ChangeOS with 
ResNet-101 using the xBD training dataset. The implementation details 
were the same as the previous experimental settings. For the inference, 
we adopted a non-overlapping sliding window strategy to handle these 
images with very high resolutions and extensive coverage, due to the 
limited GPU memory. The window size was 512 × 512 and the stride 
was 512 pixels. To efficiently apply GPU acceleration, we adopted batch 
inference with a batch size of 4. 

4.5.1.3. Accuracy assessment. To evaluate the accuracy of the whole 
pipeline, we computed the standard xView2 metric based on the 
manually annotated ground truth. The annotation of the ground truth 
was conducted by experts. In total, 16,063 and 5571 building instances 
were collected for the Beirut port explosion event and the Bata military 
barracks explosion event, respectively. Considering that, for many of the 
damaged buildings, it is difficult to recognize their damage level even 
for experts, we ignored these buildings during the evaluation. The 
trained model was directly evaluated on all the annotated samples 

Fig. 7. Visual performance of the benchmark methods on a subset containing six types of disaster from the xBD dataset.  
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without any fine-tuning, to consider the generalization ability for 
different spatial positions and disaster events. 

4.5.2. Experimental results 

4.5.2.1. Building damage assessment for the Beirut port explosion event. 
After the explosion, it was very dangerous to investigate the explosion 
and impacted area one the ground. We therefore used bitemporal pre- 
and post-disaster HSR remote sensing images and applied ChangeOS 
trained on the xBD dataset to safely and rapidly assess the building 
damage. The building damage assessment results for the Beirut port 
explosion event are shown in Fig. 10. Intuitively, the center of the ex
plosion can be easily found in Fig. 10(d), because the cluster of 
destroyed buildings (rendered in red) is clearly the center of the ex
plosion. This can help further the decision-making for the government in 
disaster response. For the explosion center, a detailed depiction damage 
state of the buildings was obtained as shown in Fig. 10(f). 

Quantitatively, ChangeOS achieves a pre-disaster building localiza
tion F1 score of 64.498% and a post-disaster building damage classifi
cation F1 score of 46.860%, which is better than the other two compared 
approaches, as shown in Table 6. In particular, the destroyed and major 
damage building classification scores are superior to those of 
UNet+ResNet and Siamese-UNet. However, for the bitemporal images of 
the city of Beirut, the non-damaged building classification scores are 
much lower than the results obtained on the xView2 holdout set. A 
potential reason for this is that the large off-nadir angle makes the tall 
urban buildings appear more inclined in the image, thereby causing a 
more serious misregistration problem. For the misregistration problem, 
ChangeOS mainly benefits from the deep OBIA framework. Although the 
conventional OBIA approach has recently confirmed its effectiveness 
with regard to the misregistration problem (Liu et al., 2021), the weaker 
feature representation ability in conventional OBIA is shown in the 
building damage assessment accuracy of UNet + ResNet. In this sce
nario, Siamese-UNet with stronger feature representation achieves a 
better accuracy, although it is not an OBIA framework, which suggests 
that strong feature representation is important for damage classification. 
ChangeOS seamlessly combines OBIA and strong feature representation, 
i.e., deep OBIA, achieving the best accuracy among different methods. 
This helps to overcome the weak feature representation problem in the 
conventional OBIA framework. 

In addition to a high accuracy, the inference speed is also important 
in disaster response. UNet + ResNet took 1978s on the CPU and 
Siamese-UNet needed 927s on a Titan RTX GPU. Under the same 
hardware environment, ChangeOS only required 52s on the GPU for 

building damage assessment of the whole of the city of Beirut, which 
covers 19.8 km2, with the pre- and post-disaster images both having a 
size of 11,880 × 16,744 pixels. This suggests that ChangeOS can provide 
rapid and robust building damage assessment results for use in disaster 
response. 

4.5.2.2. Building damage assessment for the Bata military barracks ex
plosion event. The building damage assessment for the Bata military 
barracks explosion event is shown in Fig. 11. As with the Beirut port 
explosion event, the Bata military barracks explosion event also has an 
obvious disaster center, which can also be easily observed in the ob
tained our mapping product, as shown in Fig. 11(b). However, differing 
from the Beirut port explosion, the impacted area for the Bata military 
barracks explosion is smaller, but the buildings in the impacted area are 
almost destroyed, as shown in Fig. 11(b), (d) and (f). The quantitative 
performance is provided in Table 7. An important difference with the 
Beirut port explosion is that the building localization accuracy and non- 
damaged building classification accuracy are much higher in the Bata 
military barracks explosion event dataset. This is because the disaster 
center is not in a developed urban scenario. The buildings in this area 
mostly belong to low-rise buildings. Therefore, the bitemporal images 
with large off-nadir angles have little impact on the assessment results. 
These quantitative results further confirm the superiority of ChangeOS. 
This suggests that the seamless combination of OBIA and deep learning 
is a solid foundation for the change detection problem. Furthermore, the 
advantage of the inference speed of ChangeOS remains significant in the 
Bata military barracks explosion event dataset. ChangeOS only took 23 s 
on the GPU to complete the whole assessment procedure, while Siamese- 
UNet cost 342s on the same hardware environment. 

4.5.2.3. Damaged statistic buildings for the two events. Based on the 
assessment products for the two man-made disaster events, we show the 
statistics of the damaged buildings in Fig. 12. We collected 16,063 
building polygons and 5571 building polygons for the Beirut port ex
plosion event and Bata military barracks explosion events. The common 
feature of these two explosion events was that the study areas are both 
locally impacted, which can be observed by their small ratios of the 
number of damaged buildings to the total. The difference lies in the fact 
that the cause of the Beirut Explosion was 2750 metric tons of ammo
nium nitrate, so the impacted area is obviously larger than Bata military 
barracks explosion. This also caused that there are larger other damage 
ratios in the Beirut port explosion event. Furthermore, these industrial 
chemicals will also have a potential impact on the surrounding 

Table 5 
Ablation study for the proposed modules. “Deep object features?” indicates whether deep object features are introduced from the localization sub-network into the 
damage classification sub-network. “Object-based?” indicates whether object-based post-processing is applied.  

Backbone Deep object feature? Object-based? Foverall
1 (%) Floc

1 (%) Fdam
1 (%) Damage F1(%) per class       

No Dmg. Minor Dmg. Major Dmg. Destroyed 

ResNet-18   

66.523 84.851 58.667 83.301 42.691 64.247 58.184 
✓  73.624 84.591 68.924 89.077 49.563 70.727 80.045  

✓ 75.100 84.851 70.921 92.240 55.793 72.658 72.083 
✓ ✓ 76.953 84.591 73.680 92.855 55.665 73.701 83.431  

ResNet-34   

67.129 84.909 59.509 83.586 44.329 64.151 58.460 
✓  74.232 85.029 69.605 89.045 50.575 71.155 80.578  

✓ 75.043 84.909 70.815 92.274 55.233 72.899 72.334 
✓ ✓ 77.072 85.029 73.663 92.679 55.276 73.682 84.399  

ResNet-50   

67.454 85.414 59.756 84.095 43.987 66.551 57.847 
✓  74.833 85.177 70.400 89.395 51.616 71.686 81.248  

✓ 75.501 85.414 71.252 92.175 56.210 74.151 71.363 
✓ ✓ 77.558 85.177 74.293 92.994 56.208 74.420 84.324  

ResNet-101   

67.210 85.576 59.338 84.027 43.852 65.131 57.634 
✓  75.661 85.549 71.424 89.724 53.077 72.699 81.551  

✓ 75.381 85.576 71.011 92.272 56.110 72.464 72.101 
✓ ✓ 78.759 85.549 75.849 93.493 58.862 75.493 84.711  
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environment in the city of Beirut. 

4.5.3. Limitations in real-world applications 
In disaster response scenarios, there are low-quality images during 

disasters due to bad weather conditions. For example, cloud occlusion 
will make many buildings invisible in the optical satellite images (Zhang 
et al., 2021). As shown in Fig. 11(a) and (b), buildings under the thick 
cloud are impossible to be recognized in optical images, which is a 
limitation of ChangeOS. 

5. Conclusion 

In the context of complex and diverse natural and man-made di
sasters, building damage assessment using bitemporal HSR remote 
sensing imagery is a meaningful but challenging task for the humani
tarian assistance and disaster response. The current key problem lies in 
how to learn a semantically consistent strong feature representation for 
the building damage assessment. The conventional OBIA framework can 

guarantee semantic consistency but with weak feature representation, 
while the Siamese FCN framework has strong feature representation but 
is semantically inconsistent. In this paper, we have proposed a deep 
object-based semantic change detection framework, called ChangeOS, 
to seamlessly integrate OBIA and deep learning to overcome their 
respective limitations. ChangeOS innovatively integrates building 
localization and damage classification into a unified end-to-end deep 
OBIA framework. To make the object segmentation in the framework 
differentiable, a deep object localization network is adopted to generate 
accurate building objects in place of the superpixel segmentation 
commonly used in the conventional OBIA framework. This can also 
provide deep object features to supply an object prior to the deep 
damage classification network for more semantically consistent feature 
representation. ChangeOS also adopts object-based post-processing to 
further guarantee the semantic consistency for each object. The 
comprehensive experimental results obtained on a global scale building 
damage assessment dataset and two local scale building damage 
assessment datasets of the Beirut port explosion event and the Bata 

Fig. 8. Intermediate results of the object-based post-processing in ChangeOS.  
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Fig. 9. The impact of the hyperparameter α of Tversky loss on the performance.  

Fig. 10. Visualization of the building damage assessment for the Beirut port explosion event. The minimum bounding rectangle of each image has a size of 
11,880 × 16,744. (a) Building localization. (b) Building damage assessment. (c) Sub-region of the pre-disaster image. (d) Sub-region of the post-disaster image. (e) 
Sub-region of the building localization. (f) Sub-region of the building damage assessment. To improve the visibility, we changed the color of buildings belonging to 
the non-damage class from white to blue. Legends: , , , . (For interpretation of the ref
erences to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 6 
Building damage assessment performance comparison between UNet+ResNet, Siamese-UNet, and the proposed ChangeOS for the Beirut port explosion event dataset. 
“e2e” indicates whether the method can perform end-to-end training and inference, and “object-based” indicates whether the method follows the OBIA framework.  

Method e2e object-based Foverall
1 (%) Floc

1 (%) Fdam
1 (%) Damage F1 per class (%) Inference time (s)       

No Dmg. Minor Dmg. Major Dmg. Destroyed CPU GPU 

UNet + ResNet  ✓ 12.141 37.413 1.311 14.198 – 0 0.451 1978 – 
Siamese-UNet ✓  50.872 56.645 48.398 29.978 – 85.991 58.831 – 927 
ChangeOS ✓ ✓ 53.551 64.498 48.860 27.436 – 89.355 72.676 623 52  

Fig. 11. Visualization of the building damage assessment for Bata military barracks explosion event. Each image has a size of 8085 × 10,033. (a) Building locali
zation. (b) Building damage assessment. (c) Sub-region of the pre-disaster image. (d) Sub-region of the post-disaster image. (e) Sub-region of the building localization. 
(f) Sub-region of the building damage assessment. For visibility, we changed the color of the buildings belonging to the non-damage class from white to blue. Legends: 

, , , . (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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military barracks explosion event show that ChangeOS has excellent 
performance and has a strong generalization ability. From the ablation 
study for ChangeOS, we found that the introduction of end-to-end 
learning is the most important improvement for the building damage 
assessment. The object prior can also significantly boost the accuracy. 
We also surprisingly found that the object prior can be obtained from the 
deep object features, and not just object-based post-processing, both of 
which can achieve similar accuracy improvement. We believe that 
ChangeOS could become a strong baseline for building damage assess
ment, and it represents a robust tool to further promote future research 
in humanitarian assistance and disaster response. 

In the future, we will further study robust building damage assess
ment in more complex imaging conditions (e.g., thick cloud occlusion) 
by multi-modal (Zheng et al., 2021) and multi-temporal remote sensing 
images. 
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