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Foreword 

Julia Koschinsky, PhD, Executive Director, Center for Spatial Data Science, 

University of Chicago

Data scientists usually treat the location attributes of data like any other 

attribute and apply the same non-spatial methods and tools from the regular 

data science toolkit. They know how to get the computational aspects to work 

and how to scale them. On the other side, spatial analysts are more likely to 

use specialized spatial methods and tools from spatial econometrics, spatial 

statistics, and geovisualization. But they might not know how to implement 

new spatial methods computationally and get them to run at scale.

More often than not, data science and spatial analytics are separate worlds 

with little interaction. Universities are trying to catch up on establishing and 

modernizing their data science curriculum to meet the growing demand but the 

traditional separation between computer science and geography departments 

usually prevails. Data science bootcamps also tend to maintain these divides. 

Often that leaves data scientists and spatial analysts to fend for themselves in 

bridging these worlds as they seek to spatially analyze location data at scale. 

At the same time, there are spatial data scientists in industry, academia, and 

other institutions that have been working on integrating the data science and 

spatial analytics communities. They are moving towards establishing a field 

of spatial data science. Our Center for Spatial Data Science at the University of 

Chicago and CARTOCarto have been part of these efforts. Along the same lines, 

the goal of this ebook is to help data scientists bridge this gap by adding spatial 

methods to their traditional data science toolkits.

“Spatial data science can be viewed as a subset of generic “data science” that 

focuses on the special characteristics of spatial data, i.e., the importance of 

“where.” Data science is often referred to as the science of extracting meaningful 

information” (Anselin, 2019). Spatial analytics then, is relevant because it helps 

make sense of spatial data in ways that accounts for its special characteristics, 

including spatial dependence and spatial heterogeneity (Anselin, 1989), 

geographic projections, and zonation and scale problems. 
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To give a few examples, by accounting for spatial structure in data, spatial 

models can produce more precise and less biased estimates than non-spatial 

models. They can quantify if there are spillover or interaction effects between 

neighboring areas and identify if correlations vary across space. Spatial 

optimization models are useful for solving location-allocation problems such 

as where to best site new stores. Further, customer segmentation analysis can 

be improved through spatially constrained cluster methods. And spatial access 

metrics help identify mismatches in where supply and demand are concentrated.

One of the key current opportunities in spatial data science is the development 

of a next generation of spatial methods that builds on the lessons learned from 

earlier methods and finds new ways to model the special characteristics of 

georeferenced big data (Anselin, 2019; Rey 2019). Hopefully, data scientists who 

are reading this ebook on their path to becoming spatial data scientists will help 

take on this challenge.
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Chapter 1: What is Spatial Data 
Science and Why is it Important?

"Spatial data science can be viewed as a subset of generic “data science” that 

focuses on the special characteristics of spatial data, i.e., the importance 

of “where.” Data science is often referred to as the science of extracting 

meaningful information from data. In this context, it is useful to stress 

the difference between standard (i.e., non-spatial) data science applied to 

spatial data on the one hand and spatial data science on the other. The 

former treats spatial information, such as the latitude and longitude of 

data points as simply an additional variable, but otherwise does not adjust 

analytical methods or software tools. In contrast, “true” spatial data science 

treats location, distance, and spatial interaction as core aspects of the data 

and employs specialized methods and software to store, retrieve, explore, 

analyze, visualize and learn from such data. In this sense, spatial data science 

relates to data science as spatial statistics to statistics, spatial databases 

to databases, and geocomputation to computation."  -- Luc Anselin

This quote from Professor Luc Anselin, a founding father in the field of spatial 

data science, provides not only the definition of the field and the background 

necessary for any data science practitioner to better understand the relationship 

between spatial and non-spatial data, but provides also the raison d'être for this 

resource. 

Data science is the fastest growing profession in the United States, with 

opportunities expanding exponentially, year-over-year. These opportunities 

stem from the realization among corporate and governmental leadership across 

all sectors, that in order to remain competitive, business and societal decisions 

must be informed and reenforced by data. 

It is more recent though, that these same leaders have come to recognize how 

impactful spatial analysis can be in this decision-making process, providing 

an additional level of insight. Nearly every business in the world has a spatial 

component. And as Professor Anselin noted, unlocking insights from spatial 

data involves distinct tools and techniques. By arming ourselves with these 
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methodologies, data scientists can provide greater value and investigate the 

spatial relationships that underpin every facet of our world. 

Types of Spatial Data

Spatial data is typically categorized into the following types (Cressie, 1993):

Point-referenced data

Data associated with a spatial index that varies continuously across space (Figure 

1). Examples include data from GPS tracking, fixed devices, high resolution 

satellites. This data is often useful for model inference and prediction at 

unsampled locations (Banerjee et al., 2014).

Areal data: 

Data associated with a fixed set of locations, with well-defined boundaries 

(Figure 1). The boundaries can be irregular, as in the case of administrative units 

(e.g. districts, regions, counties), or can be defined by a regular grid, as in the 

case of raster data. Typical applications consist of model inference, prediction at 

unsampled locations, and spatial smoothing (Banerjee et al., 2014).

Point patterns 

Data representing occurrences of events where locations themselves are 

random. In this context, this data is useful in evaluating possible clustering or 

inhibition between the observations (Banerjee et al., 2014). 

Network data

Data associated to a set of ordered points, connected by straight lines. Examples 

include data from mobility networks, internet, and mobile phone networks. 

Typical applications include the analysis of spatial networks (Barthelemy, 2011) 

and route optimization (Pillac et al., 2013).
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Figure 1. Types of spatial data. (left): Example of point-referenced data: Sea Surface Temperature in situ observations 
from the International Comprehensive Ocean-Atmosphere Data Set (Freeman et al., 2016). (right):  Example of 
areal data: total population in the state of NY from US Census data (source: US Census, https://www.census.gov/ ).
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The Earth is (almost) round

Dealing with spatial data also means that we need to be able to project an uneven 

spheroid, which is the Earth, on a plane or on a sphere. For a given 3D model of 

the Earth and an origin relative to its center (a datum), a projection is defined 

by appropriate functions that map the longitude and latitude coordinates to 

planar or spherical coordinates. These projected coordinate reference systems 

may be global or regional, and may have different characteristics, depending 

amongst other if they better preserve distances, scales,  shapes, or seek more 

of a visualization balance. For example, the Mercator projection, which is the 

standard map projection for navigation, preserves shapes, while the Mollweide 

projection preserves area measures. The knowledge of the coordinate reference 

system (CRS) is critical in order to establish the units of measurements, 

compute distances and describe the relative position of different regions (e.g. in 

a neighbourhood structure). A comprehensive list of available CRS’ is compiled 

and updated by several sources, such as http://epsg.io/.

Dive into our notebook which will be linked throughout this 

ebook, to learn more about visualizing spatial data using 

CARTOframes, CARTO’s Python package for integrating 

CARTO maps, analysis, and data services into data science 

workflows. Why is Spatial Special? Spatial Dependence

Why is Spatial Special? 
Spatial Dependence

Spatial data is geographically referenced data, given at known locations and 

often represented visually through maps. That geographic reference, or the 

location component of the data, may be represented using any number of 

coordinate reference systems, for example, longitude and latitude. 

One of the useful properties of spatial data is that data at nearby locations 

http://epsg.io/
https://github.com/CartoDB/data-science-book/blob/master/Chapter%201/Visualizing%20spatial%20data%20with%20CARTOframes.ipynb
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“tends” to be similar. This was first recognized by Geographer and Cartographer 

Waldo Tobler in 1970 through his “First Law of Geography,” which states that 

“everything is related to everything else, but near things are more related than 

distant things.” In other words, spatial data is spatially dependent or correlated, 

and independence between the observations, which is a common assumption 

for many statistical techniques, is not satisfied.

So how is spatial dependence generated? Spatial dependence can arise for various 

reasons (Diggle et al., 2013). An observed spatial pattern may be observed in 

variables strictly depending on the location, or because of direct interactions 

between the points. In practice, it can be difficult, or even impossible, to 

distinguish empirically between these different processes.

Measures of Spatial Dependence 

Different measures of spatial dependence exist, varying depending on whether 

you are dealing with continuous spatial processes (the spatial index is assumed 

to vary continuously), discrete spatial processes (the spatial index only assumes 

discrete values), or point-pattern processes.

Measure 1: Covariance Functions 
and Variograms

A continuous spatial process  is often assumed to follow a Gaussian 

distribution and if so, is then called a Gaussian Process (GP). A GP is 

parameterized by a mean function and covariance function. In principle, 

any covariance function  which produces a positive-definite matrix for 

any input can be used to model the dependence between two observations. 

In practice, often the covariance function between two points is assumed to 

be the same if they are shifted in space (i.e. the GP is stationary) and to depend 

only on the distance between them (i.e. the GP is isotropic), but non-stationary 

(and/or anisotropic) models are also possible (although more difficult to specify) 

(Banerjee et al., 2014). An example of a stationary and isotropic covariance 

model is given by the exponential covariance function
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   (3)

where  is a scale parameter, and controls the range of the spatial process 

(small values will imply a fast decay in the correlation with distance). When 

the stationarity condition is also satisfied by the variance function, we can also 

define the semivariogram  as

 (4)

An empirical variogram can be constructed by grouping the pairs of observations 

in bins based on their distance (if isotropy is assumed) or on their distance and 

direction (for anisotropic processes) and averaging the squared differences from 

the values for all pairs.  Given a semivariogram model, we can then fit this model 

to the empirical semivariogram and estimate the model parameters.

Measure 2: Moran’s I

For discrete spatial processes, the spatial dependent relationship is characterized 

in terms of adjacency. Given observations associated with a discrete index 

 we can construct a neighbourhood structure with entries  which 

connects units  and  in some fashion (e.g.  if  and  are neighbours 

and zero otherwise).

To measure the strength of spatial association for discrete processes, a standard 

statistics is given by Moran’s  coefficient, which is calculated as a ratio of the 

product of the variable of interest and its spatial lag, with the cross-product of 

the variable of interest, and adjusted for the spatial weights used (Bivand et al., 

2013)

 (5)

where  represents the mean. By comparing the computed  with the mean and 

variance of its asymptotic distribution under the null hypothesis that the  are 

IID (which is a normal distribution) we can use this coefficient as an exploratory 
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measure of spatial association. However, if the aim is to run a test of statistical 

significance, a Monte Carlo permutation-based approach, in which the values 

of  are randomly assigned to the spatial entities, is typically recommended 

(Bivand et al., 2013). Moran’s  coefficient can be also applied in a local fashion 

(Anselin, 1995) to identify local clusters and local spatial outliers.

Measure 3: Spatial Randomness 

With point pattern processes, the most basic test of spatial dependence is that 

of Complete Spatial Randomness (CSR), which consists of assessing if the events 

are distributed randomly and uniformly over the study area, or alternatively, 

that there are regions where the events are more likely to occur. 

A very basic form of point pattern analysis involves summary statistics such as 

the mean center and a measure of dispersion given, for example, by the standard 

deviational ellipse, which separates the distance for each axis. 

Testing for CSR, typically involves computing variation of the observations’ 

density across a study area. For example, an empirical sampling distribution 

from a large number of  test statistics can be derived comparing, in a 

rectangular tessellation over the study area, the observed against the expected 

point counts under the CSR hypothesis, and then calculating a corresponding 

pseudo p-value (aka Quadrat statistic). To measure the degree of CSR, several test 

functions are available. For example, the G-function measures the distribution 

of the distances  from an arbitrary point to its nearest point within a range 

 (6)

and compares it to its value under CSR (Bivand et al., 2013)
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Figure 2. Measures of spatial dependence for the Boston housing data (Harrison and Rubinfeld, 1978). (left): 
Local Moran’s I plot.  (c): Mean center and ellipsoid for the London Police crime data  (http://data.police.uk/).

http://data.police.uk/
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For those looking to perform their own analysis, the below table includes 

examples of common packages used for exploratory analysis for measures of 

spatial dependence:

Package Language Reference Method

gstat R https://rdrr.io/cran/gstat Variogram analysis

scikit-gstat Python https://pypi.org/project/
scikit-gstat Variogram analysis

spdep R https://rdrr.io/cran/spdep Moran Statistics

PySAL Python https://pysal.readthedocs.io/
en/latest/index.html

Moran Statistics, Tests for 
Spatial Randomness

spatstat R https://rdrr.io/cran/spatstat Tests for Spatial 
Randomness

Our accompanying notebook has workflow examples 

of computing measures for spatial dependence

https://rdrr.io/cran/gstat
https://pypi.org/project/scikit-gstat
https://pypi.org/project/scikit-gstat
https://rdrr.io/cran/spdep
https://pysal.readthedocs.io/en/latest/index.html
https://pysal.readthedocs.io/en/latest/index.html
https://rdrr.io/cran/spatstat
https://github.com/CartoDB/data-science-book/blob/master/Chapter%201/Computing%20measures%20of%20spatial%20dependence.ipynb
https://github.com/CartoDB/data-science-book/blob/master/Chapter%201/Computing%20measures%20of%20spatial%20dependence.ipynb
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Chapter 2: Spatial Modeling - 
Leveraging Location in Prediction

Spatial modeling consists of the analysis of spatial data (i.e. data that exhibits 

spatial dependence) to make inferences about the model parameters, to predict 

at unsampled locations, or for downscaling/upscaling applications (Anselin, 

1988; Banerjee et al., 2014). 

With new techniques and technologies, increased processing power, and the 

proliferation of spatial expertise across industries, spatial modeling is evolving 

to meet new challenges. Areas of applications are many, including climatology, 

epidemiology, real estate, and marketing, and possible questions that may 

arise include the following: How does the revenue of my store depend on socio-

demographic patterns? Are my clients more likely to churn if their neighbours 

are also churning? How are the spatial patterns of road incidents related to road 

and demographic features?

For non-spatial data, a variable of interest  can usually be modeled as

 (1)

where  is the mean structure and can depend on some covariates  (also known 

fixed effects, as e.g.  ) and  represents an IID process. When dealing 

with spatial data , we might add to Equation (1) an extra term  

representing a spatial random effect

 (2)

where  represents a spatial index (e.g. longitude/latitude coordinates or the area 

identifier).  effectively acts as a spatial smooth, ensuring that observations that 

are close in space will be also “close in ” and constitutes the added value of the 

spatial dependence property.
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Continuous Spatial Error Models

Models for continuous spatial processes  are typically based on Gaussian 

Processes and imply a covariance/semivariogram model to describe the spatial 

dependence structure. Traditional methods used for mapping continuous 

spatial variables are based on the kriging methodology (Cressie, 1993). In 

kriging, predictions at new locations come from a weighted average in the 

neighborhood by assuming a known covariance/semivariogram. Different 

types of kriging exist depending on the assumptions on the mean and covariance 

or semivariogram of the process. Ordinary kriging is used to estimate a variable 

of interest when a variogram is known, while universal and regression kriging 

are adopted when the model includes some covariates and the variogram is 

estimated from the model residuals.

Computing the empirical semivariogram and fitting a semivariogram model 

comes with some uncertainty, both in the construction of the empirical 

semivariogram and when fitting the semivariogram model to it. In order to 

properly account for these uncertainties in the estimates/predictions and 

to enable the development of more complex, realistic models, methods for 

continuous spatial processes require a Bayesian framework (Banerjee et al., 2014). 

However, in the general situation, an exact solution does not exist and it must 

be inferred either by simulation, using Markov Chain Monte Carlo (MCMC) 

methods, or by approximate methods, for example. using the Integrated Laplace 

Approximation (INLA) with the Stochastic Partial Differential Equation (SPDE) 

approach (Bakka et al., 2018).

In order to use a GP in practice, it is necessary to either calculate the determinant 

or find the inverse of the covariance matrix, and, given  observations 

computations scale as . This problem, known as the “big  problem,” 

affects both traditional kriging methods and even more MCMC methods, which, 

despite being very general and applicable to any model, become impractical for 

problems characterized by large data or very complex structures, due to the 

computational burden. In response to these computational limitations, scalable 

approximations have been developed. These include low rank approximations, 

which decompose the covariance matrix into a smaller rank  matrix, sparse 

approximation methods, which focus on compactly supported covariance 

representations, and spectral methods, which appeal to spectral constructions 

of the covariance matrix (see Chapter 11 in Banerjee et al., 2014).
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Point patterns can also be modeled as a continuous spatial process. In this 

case, the interest lies in modeling the intensity  which varies spatially 

and may also depend on some covariates. The intensity can be modeled non-

parametrically using kernel smoothing (Diggle, 2014), after which, logistic 

regression can be used to estimate the model coefficients. Alternatively, the 

intensity can be directly modeled as a Log-Gaussian Cox process and the model 

parameters estimated using the INLA/SPDE approach (Simpson et al., 2010). 

Examples of R and Python packages that can be used in the context of modeling 

continuous spatial processes are provided in the table below.

Package Language Reference Method

gstat R https://rdrr.io/cran/gstat Kriging

PyKrige Python https://pypi.org/project/
PyKrige/ Kriging

mgcv R https://rdrr.io/cran/mgcv Kriging with additive 
models

spBayes R https://rdrr.io/cran/spBayes Bayesian (MCMC)

RStan R http://mc-stan.org Bayesian (MCMC)

FKR R https://rdrr.io/cran/fkr
Fixed Rank Kriging  (low 
rank approximation 
method)

R-INLA R http://www.r-inla.org
Bayesian (INLA/SPDE) 
(sparse approximation 
method)

spatstat R https://rdrr.io/cran/spatstat
Intensity estimation by 
kernel smoothing (point 
patterns)

Examples of common packages used for spatially continuous error models.

Our accompanying notebook provides more 

detail on continuous spatial error models

https://rdrr.io/cran/gstat
https://pypi.org/project/PyKrige/
https://pypi.org/project/PyKrige/
https://rdrr.io/cran/mgcv
https://rdrr.io/cran/spBayes 
http://mc-stan.org
https://rdrr.io/cran/fkr
http://www.r-inla.org
https://rdrr.io/cran/spatstat
https://github.com/CartoDB/data-science-book/blob/master/Chapter%201/Continuous%20Spatial%20Models.ipynb
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Discrete Spatial Error Models

Discrete spatial models are based on an adjacency matrix , which defines 

neighbor relationships: entries  and  are positive when regions  

and  are neighbors, and zero otherwise. Models based on neighbourhood 

structures are Markovian models: the parameters for the -th area are assumed 

independent on all the other parameters given the set of its neighbors 

, i.e. . A Gaussian random field 

that satisfies this conditional independence property is known as  a Gaussian 

Markov Random Field (GMRF). Under the Markovian property, the elements 

in the precision matrix (the inverse of the covariance matrix, ) are non-

zero only for neighbours and diagonal elements, with the consequence that  

is sparse, which leads to fast computations. Moreover, with GMRFs, since the 

model directly parametrizes the inverse of the covariance matrix, there is no 

“big problem” in this context.

In order to use GMRFs, we need to construct sparse -matrices. A popular choice 

for this is Conditionally Autoregressive (CAR) models (Anselin, 1988; Banerjee 

et al., 2014), which rely on the conditional distribution of the spatial error terms

i.e. the conditional distribution for the GMRF component for the -th area is 

normal with a mean that depends, with strength , on the average of its neighbors. 

The construction of the spatial adjacency matrix determines the class of the 

CAR model structure: for example, Intrinsic CAR (ICAR) models provide 

spatial smoothing by averaging measurements of directly adjoining regions. 

Another common option is to use a Simultaneous Autoregressive (SAR) model, 

based instead on a spatial autoregressive error term (Banerjee et al., 2014). CAR 

and SAR models can be also implemented in a Bayesian framework, where they 

can be used as priors, as part of a hierarchical model (c.f. for example the ICAR 

specification in the Besag, York, Mollié model, Besag et al., 1991).

Moving away from CAR/SAR models, a different approach consists of adding a 

GMRF spline-based smooth to our model (Wood, 2010). This has the effect that 

the model parameters for any unit will vary smoothly over the neighbours of 
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that unit, with the degree of smoothness controlled by the rank of the GMRF 

(e.g. full rank corresponds to many knots as units).

Examples of R packages that can be used in the context of modeling discrete 

spatial processes are provided in the table below:

Package Language Reference Method

mgcv R https://rdrr.io/cran/mgcv GMRF smooths

spdep R https://rdrr.io/cran/spdep CAR/SAR error models

R-INLA R http://www.r-inla.org CAR/SAR error models

Examples of common packages used for spatially discrete error models

Our accompanying notebook provides more 

detail on discrete spatial error models

https://rdrr.io/cran/mgcv
https://rdrr.io/cran/spdep
http://www.r-inla.org
https://github.com/CartoDB/data-science-book/blob/master/Chapter%201/Discrete%20Spatial%20Models.ipynb
https://github.com/CartoDB/data-science-book/blob/master/Chapter%201/Discrete%20Spatial%20Models.ipynb
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Figure 3. Predictions (mean) for the concentration of Zinc near the Meuse river in the Netherlands 
obtained using kriging (left) and predictions (mean) for the owner occupied housing value in Boston 
obtained using INLA and a Besag, York, Mollié (BYM) model for the spatial random effects (right)
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Spatially Varying Coefficient Models

In some cases it could be attractive to allow the coefficients in the model to 

vary by location, envisioning for a particular coefficient a spatial surface, 

e.g . Geographically weighted regression (GWR; Brunsdon et al., 2010) is the 

representative approach for spatially varying coefficient (SVC) models for 

point-referenced data. GWR  estimates one set of coefficient values for every 

observation using all of the data falling within a fixed window (bandwidth) from 

this location, and giving the most weight to the data that is closest. Because the 

results tend to depend on the choice of the bandwidth, this method is mainly 

used as an exploratory technique intended to indicate where non-stationarity 

is taking place. Better options are represented by spline-based methods (Wood, 

2010) and, although more computationally demanding, Bayesian methods 

(Gelfand et al., 2003; Gamerman et al. 2003). Bayesian SVC models for areal data 

are also available by using the GMRF specification, for example as implemented 

in the R package R-INLA (Bakka et al., 2018).

Package Language Reference Method

spgwr R https://rdrr.io/cran/spgwr GWR

PySAL Python https://pysal.readthedocs.io/
en/latest/index.html GWR

mgcv R https://rdrr.io/cran/mgcv SVC model  (point-
referenced)

spBayes R https://rdrr.io/cran/spBayes
Bayesian (MCMC) SVC 
model  (point-referenced 
data)

R-INLA R http://www.r-inla.org
Bayesian (INLA) SVC 
model (point-referenced 
and areal data)

Examples of common packages used for modeling for spatially varying coefficient models.

Spatial Confounding 

Spatial confounding occurs when adding a spatially-correlated error term 

changes the estimates of the fixed-effect coefficients (Hodges, 2010), especially 

https://rdrr.io/cran/spgwr
https://pysal.readthedocs.io/en/latest/index.html
https://pysal.readthedocs.io/en/latest/index.html
https://rdrr.io/cran/mgcv
https://rdrr.io/cran/spBayes
http://www.r-inla.org
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when the fixed effects are highly correlated with the spatially structured 

random effect. To avoid this effect, a solution known as restricted spatial 

regression, is used, consisting of restricting the spatial random effect to the 

orthogonal space of the fixed effects.

Validation Tools

To assess the predictive performance of a spatial model, traditional validation 

tools are typically adopted. These rely on graphical methods (e.g. graphical 

inspection of the residuals) or computing some discrepancy measures such 

as the Root Mean Square Error (RMSE), the pseudo-, the Logarithmic and the 

Continuous Ranked Probability Score, either splitting the data into a train and 

a test subset or using k-fold cross validation (Hastie et al., 2017). However, extra 

care must be taken with spatial data since, in this case, observations that are 

closer in space have stronger dependencies, which can result in biased measures 

of discrepancy. Equivalent spatial cross-validation and bootstrap strategies 

based on spatial resampling-based methods can be implemented, using, for 

example, the R package sperrorest (Brenning, 2012). In practice, both non- and 

spatial cross-validation methods can be very computationally expensive when 

working with spatial models, and their use is still not very common.

Spatio-temporal Models

A temporal dimension when working with spatial data is also common, as 

for example in the case of moving devices such as sensors, vehicles, or mobile 

phones. Methods for analysing spatio-temporal data model the field  accounting 

both for a spatial dimension, as described in the previous sections, and the 

temporal dimension, which fundamentally differs because time flows only in 

one direction. For a review of spatio-temporal models see Banerjee et al. (2014) 

and Cressie and Wikle (2011).
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Chapter 3: Spatial Clustering 
and Regionalization

Like clustering in traditional data science, spatial clustering covers a wide range 

of methods and applications. Some traditional clustering methods can easily be 

adapted to spatial problems while others require a reformulation to account for 

the spatial relationships inherent in spatial data. Others are not well-suited for 

spatial problems.

Within clustering, there exists a special subclass where additional spatial 

constraints can be added to ensure that base geographies are contiguous. This 

type of clustering, which yields regions built from sub-geographies, is known as 

regionalization. This class of clustering methods is known as regionalization.

This chapter will cover some powerful spatial clustering methods and show 

some of the more common and/or powerful methods used in spatial data 

science. While the landscape of methods is large, many clustering algorithms 

don't neatly fall into existing methods and need to be custom programmed 

using linear programming, graphs (e.g., min cost flow), heuristic methods (e.g., 

genetic algorithms, tabu search, etc.), or other methods. We will not be covering 

these here

Methods for Spatial Clustering

1. K-means for Spatial Clustering

One of the more common methods used for spatial clustering, k-means, uses 

data attributes to create a predefined number of categories or classes that, via 

those attributes are different from one another while staying alike within that 

category, has a couple of advantages. (Arribas-Bel)

First, the number of clusters is set a priori, as opposed to DBSCAN (described 

below) which requires bandwidth tweaking to establish the number of clusters 

https://carto.com/blog/last-mile-transportation-route-optimization/
https://carto.com/blog/sales-territory-balancing-optimization/
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desired. Additionally this method is fast and robust, even when working on 

higher dimensional datasets.

K-means is useful for clustering in a parameter space where geographies are 

assigned categories, commonly used in segmentation (Singleton, Spielman, 

2013) as well as for spatial variants where each cluster forms a spatially 

connected component.

Language/Platform Reference

Python scikit-learn - https://scikit-learn.org/stable/

R stats - https://stat.ethz.ch/R-manual/R-devel/library/stats/
html/kmeans.html

PostGIS https://postgis.net/docs/ST_ClusterKMeans.html

How and where to find/use k-means

While k-means can be used as a quick and dirty method for direct use on latitude 

and longitude, that should be discouraged, as it may not yield reliable results, 

especially if there is a strong geographical boundary such as a river. K-means 

works by minimizing the variance of inter-cluster values and maximizing 

intra-cluster values, not by minimizing distance. That is, k-means minimizes 

the variances of 'distance' instead of minimizing the distance within the cluster.

As such, it is generally fine for spatially close clusters (within a city for example), 

but distances should be computed using the haversine formula instead of 

straight latitude-longitude since geographical distances change with latitude. 

Again, this can be okay for rough clusters, but algorithm-based strategies can 

actually work against the goal of creating good clusters.

For example, if clusters are imbalanced (for example, one cluster has more 

samples than another), the cluster that has a higher number of samples will 

tend to be randomly selected more, resulting in more seeds centers within that 

area. Meanwhile, areas that have fewer samples are more likely to be assigned 

with the areas that are sampled more. The result is that significant clusters that 

https://scikit-learn.org/stable/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
https://postgis.net/docs/ST_ClusterKMeans.html
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are spatially separated but have fewer samples tend to be grouped with other 

clusters which have more samples and are farther away. In this case, algorithms 

like DBSCAN are a better approach. (Boeing, G.)

2. DBSCAN for Spatial Clustering

DBSCAN, which is a standard piece of the data scientist toolkit, identifies 

clusters by grouping entities together that are within a distance r from each 

other such that a cluster has m points in it. If a cluster fails to meet the m points 

threshold, entities are classified as noise. Otherwise, they are either classified 

as a cluster border or as part of the cluster core. In addition to meeting the 

limitations listed above, an advantage of this method is that cluster shapes can 

be arbitrary as opposed to k-means where cluster shapes are convex. An example 

of using DBSCAN for clustering can be seen here. 

Variants of DBSCAN have further functionality. OPTICS is a generalization 

of DBSCAN that is more tolerant to distances and therefore different cluster 

densities. HDBSCAN is another variant that takes a hierarchical approach to 

finding dense clusters. HDBSCAN was used in the CARTO project A Million 

Walks in the Park:

Learn even more about this project on the CARTO blog

https://carto.com/blog/visit-pattern-footfall-data-safegraph/
https://carto.com/blog/visit-pattern-footfall-data-safegraph/
https://en.wikipedia.org/wiki/OPTICS_algorithm
https://hdbscan.readthedocs.io/en/latest/
https://carto.com/a-million-walks-in-the-park/
https://carto.com/a-million-walks-in-the-park/
https://carto.com/blog/lessons-learned-analyzing-million-points-GPS-data/
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DBSCAN was also used in a CARTO blog post about Safegraph's data. Follow 

along with the example notebook: https://github.com/CartoDB/data-science-

book/blob/master/Chapter%202/dbscan.ipynb

Another variant of DBSCAN is Generalized DBSCAN which takes into account 

spatial features. See the research paper for more information. As of the time 

of writing, there are not implementations in common data science languages, 

although a Java version exists in the ELKI project.

Language/Platform Reference

Python scikit-learn - https://scikit-learn.org/stable/

R https://rdrr.io/cran/dbscan/

PostGIS https://postgis.net/docs/ST_ClusterDBSCAN.html

How and where to find/use DBScan

Clustering with umap

Umap is a newer technique and its use in clustering is still at the stage where 

results are to be taken with a larger grain of salt than other clustering methods. 

This methodology is interesting as the data is embedded in a multi-dimensional 

manifold.

Language/Platform Reference

Python https://umap-learn.readthedocs.io

R https://rdrr.io/cran/umap/

Learn more about umap

https://carto.com/blog/visit-pattern-footfall-data-safegraph/
https://github.com/CartoDB/data-science-book/blob/master/Chapter%202/dbscan.ipynb
https://github.com/CartoDB/data-science-book/blob/master/Chapter%202/dbscan.ipynb
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.1629&rep=rep1&type=pdf
https://elki-project.github.io/releases/current/doc/de/lmu/ifi/dbs/elki/algorithm/clustering/gdbscan/GeneralizedDBSCAN.html
https://scikit-learn.org/stable/
https://rdrr.io/cran/dbscan/
https://postgis.net/docs/ST_ClusterDBSCAN.html
https://umap-learn.readthedocs.io
https://rdrr.io/cran/umap/
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Regionalization

Regionalization is a type of clustering that enforces contiguity constraints on the 

geographies. That means that smaller geographies can be put together to form 

larger, contiguous regions that are constructed to optimize for qualities such 

as similar populations, homogenous measures (e.g., similar socio-demographic 

characteristics), and compactness among others. Regionalization techniques 

can be used to construct sales territories that are roughly fair between all sales 

reps, build fair voting districts, ...

SKATER

The SKATER algorithm enables regionalization by constructing a contiguity-

based minimum spanning tree that ensures homogeneity within trees by 

minimizing costs that are the inverse of the similarity of joined regions. 

(Assuncao et al, 2006). This means that a cost is associated with each neighbor 

pair. This can be one or more standardized attribute values that are reduced by 

calculating by some distance metric (e.g., manhattan, euclidean, etc.). Larger 

distances in the attribute space are less disimilar so are less likely to be paired. 

The contiguity is represented as a minimum spanning tree where cuts are made 

to ensure that individual regions are homogenous.

These properties of SKATER allow one to construct regions that are similar 

within a cluster and dissimilar from other nearby clusters.

In the skater.ipynb notebook, we demonstrate a use case to construct clusters of 

areas in New York City that have similar median incomes.

https://www.researchgate.net/publication/220649523_Efficient_Regionalization_Techniques_for_Socio-Economic_Geographical_Units_Using_Minimum_Spanning_Trees
https://github.com/CartoDB/data-science-book/blob/master/Chapter%202/skater.ipynb
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SKATER has advantages over similar methods in that it is relatively efficient.

Language/Platform Reference

Python https://github.com/pysal/spopt in the near future

R https://cran.r-project.org/web/packages/spdep/index.html

Resources to perform SKATER analysis

Max-p

The Max-p-regions algorithm provides spatially constrained regions that 

are homogenous and meet a minimum threshold requirement. For example, 

https://github.com/pysal/spopt
https://cran.r-project.org/web/packages/spdep/index.html
https://ipc.sdsu.edu/wp-content/uploads/2019/03/MaxP_authored.pdf
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finding regions constructed from census tracts that are similar median incomes 

but ensuring that each region has a minimum number of households. 

Max-p allows one to construct regions without pre-defining the number 

of regions desired, but allows for some control by establishing a minimum 

threshold that all regions must meet. Effectively, this can be used to force regions 

to be a minimum size in terms of base units (e.g., each region must contain 10 

counties) or population (e.g., each region must have 10k people). This property 

can be useful for aggregating sub-units so that the region has a statistically 

significant sample when doing, for example, polling.

The drawbacks to using this method are that max-p can be slower to run for 

larger datasets. For this reason, heuristic-based solutions have been developed 

so that approximate solutions can be calculated. Max-p also can lead to the 

construction of non-compact regions as can be seen in the map below. This 

can be a problem for some applications as having spatially compact regions is 

important for efficiency of travel within a region depends can depend strongly 

on the shape of the constructed region.
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Agglomerative Clustering

Agglomerative clustering is a type of hierarchical clustering where clusters are 

built from the bottom up. This algorithm starts building clusters where each 

object is in its own cluster, then clusters are recursively merged (agglomerated) 

using a "linkage strategy" such as minimizing the sum of squared distances 

within a cluster. Similar to k-means, the cluster number is specified and initial 

random seeds are selected at the beginning of a run.

The linkage strategy in agglomerative clustering depends on the use case, but 

four main ones are used:

• Minimize the sum of squared distances within 

clusters (minimize distance variance)

• Minimize average distance within clusters

• Minimize the closest distance within clusters

• Minimize the maximum distance within clusters

What makes agglomerative clustering well suited for spatial problems is that 

the clusters can be built with a pre-defined connectivity graph, such that only 

connected clusters can be joined into larger clusters, and distances between 

units can be pre-calculated according to different metrics (e.g., euclidean or an 

arbitrary distance from an external service like a routing engine). Such graphs 

can created using PySAL's weights interface.

Different linkage strategies lead to clusters with different compactness. For 

example, given that `ward` minimizes the sum of squared distances within a 

cluster, it tends to create more compact clusters.

In our example in this notebook, we use PySAL's weight objects to find 

contiguous clusters of shoreline-clipped census tracts in New York City, and we 

manually add a half dozen bridge connections to demonstrate how the clusters 

permeate based on connected nodes.

https://github.com/CartoDB/data-science-book/blob/master/Chapter%202/agglomerative.ipynb
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Click here to view the interactive map

Language/Platform Reference

Python https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.AgglomerativeClustering.html

R https://rdrr.io/cran/cluster/

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://rdrr.io/cran/cluster/
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Chapter 4: Logistics Optimization 
with Spatial Analysis

Optimization is a discipline that combines mathematical methods with 

computer science, and whose goal is to find the best possible element with regard 

to some criterion and a set of available alternatives. 

It is widely used across many different sectors from logistics, to production 

planning, to scheduling, where it is used to make optimal decisions regarding 

where to open new distribution centers, to determine the inventory policy of a 

specific product, or to design the routes for delivering e-commerce products, to 

name just a few examples.

Optimization is especially useful in contexts where decision making is difficult 

due to the scarcity of a resource, the high investment required to run a business, or 

simply because taking into consideration all the relevant data and information, 

together with the complex interactions among the different elements of the 

problem is impossible for a person. This is why many decision support systems 

include some optimization component, allowing for the evaluation of  millions 

of solutions in a matter of seconds.

One of the sectors where optimization is most commonly used is Logistics. 

Some examples of its applications in this sector include:

• Strategic decision making: Should we open a new 

cross-dock center? Where should we open it?

• Tactical decision making: Should distribution centers 

deliver everywhere or should they have specific delivery 

areas? What should the delivery areas of each DC be?

• Operational decision making: Given a set of pickups/

deliveries: what is the optimal route? What vehicle should 

we use? What driver should perform each action?

• Real-time decision making: If there is an 

incident on-route, how should we react?
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All of these logistics problems have a very strong spatial component that must 

be considered as part of any optimization solution.

What does data for optimization look like?

The three most commonly used types of data in Logistics are points, lines, and 

distance/time.

Points 

Represent locations. They can be customers, distribution centers, stores, etc.

Lines 

Represent the transportation network. They are mainly used for visualization 

purposes, and in order to store information on the network’s characteristics 

(connections between points, distances, etc.) matrix or graph structures are 

used.

Distance/time

For any logistics problem, it is essential to represent its network characteristics 

(mainly times/distances between points, but it can be anything: costs, road 

safety, etc.). The most natural way to represent this information is with 

matrices. Since these matrices are usually very sparse, triplet or linked matrix 

representations are used instead

Building our optimization model

An optimization problem consists of two main components, the model and the 

search.
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The Model

The model is the formulation of the problem. It can be a traditional mathematical 

formulation with equations, or a more conceptual formulation not necessarily 

expressed in mathematical terms.

A typical optimization model consists of the following components:

1) Decision Variables

Decision variables represent the decisions that need to be made and that will 

lead to an optimal solution. Depending on the logistics problem at hand, our 

decision variables could be whether to open a distribution center (DC) at a 

specific location, whether a zip code is served by a DC, or which truck will serve 

one customer and when.

The most frequently used variables are those with integer, binary, and 

continuous domains. For some specific problems, such as task assignment 

problems, it can also be useful to work with set variables.

2) Objective Function

The objective function is the measurement/metric that will allow us to 

determine objectively whether one solution is better than another. The typical 

cost function includes costs, but it can consist of anything measurable: cost, 

service level, etc.

The objective function can be a mathematical expression or more complex 

expressions. For example, in case of having a multiobjective optimization 

problem, we may be interested in applying the lexicographic method in which 

the second order goals are only evaluated if there is a tie between two or more 

solutions when evaluating the first order goals.

3) Constraints:

Constraints define what solutions are feasible from different points of view. We 

can have, for example, physical constraints (a truck cannot transport more than 
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its capacity), and business constraints (every client should not be further than 

20 miles away from the closest DC).

Constraints can be algebraic expressions  , or logical expressions (if 

A, then B).

Given these elements, a solution to an optimization problem consists of a set 

of pairs variable-value  such that if every variable is set to its 

paired value,   all constraints are fulfilled.

All optimization problems have decision variables, but not all of them necessarily 

have an objective function or constraints. For example, when scheduling tasks, 

finding a solution is so complicated, that just finding a solution which satisfies 

all constraints is considered to be a success.

The Search

The search is responsible for finding the best possible solution. It is called search 

as a reference to the exploration of the solution space (defined by the problem’s 

constraints) performed seeking the optimal solution.

The search then consist of an algorithm or a combination of algorithms whose 

goal is to find a solution. Search algorithms are usually classified into two 

categories:

Exact Algorithms

Exact algorithms are those which solve a problem to optimality, i.e., they find the 

actual optimal solution. Ideally, we would always like to use an exact algorithm 

to be sure we have the best possible solution. However, we are constrained by 

time and computational capacity, so not all problems can be solved with exact 

algorithms.

One of the best known exact algorithms in Optimization is the Simplex 

Algorithm. In Logistics, there are some interesting problems related to network 

design that can be solved with the Simplex Algorithm such as distribution 

https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Simplex_algorithm
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center (DC) opening/closing, and distribution area definition.

There are several solvers with the Simplex Algorithm and some of its variants 

implemented, both commercial and open source. A good choice is Google OR-

Tools, an open source software suite for optimization. This suite provides you 

with an API to model your optimization problem, and later connect to different 

solvers, so you can compare their performance on your specific problem.

Approximate algorithms:

Due to the complexity of many optimization problems, often times it is 

impossible to find the optimal solution in a suitable amount of time. This is the 

case of combinatorial optimization problems, from which the routing problems 

that apply in Logistics are a good example.

The goal of an approximation algorithm is to come as close as possible to 

the optimum value in a reasonable amount of time. Two of the best known 

approximation algorithms applied in routing problems are Simulated 

Annealing, and Tabu Search. The implementation of these algorithms can be 

found in Python packages such as simanneal, or Google OR-Tools that allows 

you to test different metaheuristics.

It is important to note that approximation algorithms cannot tell whether 

a solution is optimal or not, so a stopping criteria needs to be set. The most 

commonly used criteria is to set a time limit. A combination of a time + 

improvement criteria is also common. One such criteria would look like “Stop 

after t seconds without finding a solution which improves the last best solution 

found in more than a p% since it was found”.

Algorithms for Routing Problems

Focusing specifically on routing problems, algorithms can also be classified in 

two categories: Graph vs. Non-graph ones. This is because routing components 

can be represented as graphs, where the graph nodes are the places to visit 

(they can be distribution centers, stores, customer’s addresses, etc.) and the 

https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Tabu_search
https://github.com/perrygeo/simanneal
https://developers.google.com/optimization/
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edges are the possible connections between pairs of nodes. Nodes and edges 

can be assigned weights representing elements of the problem. For example, a 

node can be assigned the value of its demand, and an edge can be assigned the 

time from the origin to the destination nodes. Some very well known graph 

algorithms applied for routing are Dijkstra’s algorithm for finding the shortest 

path between two nodes, or the Christofides algorithm for solving the Traveling 

Salesman Problem, as seen in the next chapter.

Optimization in Action: Solving the 
Traveling Salesman Problem

Perhaps the most famous and prominent routing optimization problem, with 

multiple methods developed for finding a solution, the Traveling Salesman 

Problem is defined thusly:

“Given a list of cities and the distances between each pair of cities, what is the 

shortest possible route that visits each city and returns to the origin city?”

The Traveling Salesman Problem is a combinatorial optimization problem. 

This means it gets very hard to solve with a rather low number of cities as the 

number of possible solutions for n cities is n! 

Because of this combinatorial complexity, exact algorithms are rarely the best 

approach. There is a very powerful iterative algorithm that uses integer linear 

programming (an exact technique) at each iteration, which ensures optimality 

and that has been proven to work very efficiently with instances of up to 1000 

cities from one of the very well known TSP benchmarks. You can find the 

formulation using Gurobi here. However, when your business problem requires 

additional constraints, this algorithm is no longer an option. This is why the 

most common approach is to use approximate algorithms.

Among the different approximate algorithms, the most common ones are the 

family of local search algorithms, and genetic algorithms. One example of a 

local search algorithm is Simulated Annealing. Ant Colony Optimization (ACO) 

is one of the best known genetic algorithms. The main difference between 

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Christofides_algorithm
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Integer_programming
https://en.wikipedia.org/wiki/Integer_programming
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/
https://www.gurobi.com/documentation/8.1/examples/tsp_py.html
https://en.wikipedia.org/wiki/Local_search_(optimization)
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
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these two families of algorithms is on how the problems are formulated, and, 

of course, the logic behind them. While Simulated Annealing starts from one 

solution and keeps moving to neighboring solutions with some randomness, 

Ant Colony Optimization can be seen as a simulation technique in which 

artificial ants (simulated agents) move through the graph.

Both families of algorithms have been proved to be very powerful with routing 

problems, and in particular with the TSP. The main criterion for choosing one or 

the other usually depends on the data scientist’s proficiency with each of them, 

and the requirements in terms of open source vs. commercial software. With 

local search algorithms, it is very common to find libraries with several of this 

family’s algorithms implemented, so normally, two or three of these techniques 

will be tested to find the one that suits our problem best.

Finally, many of the algorithms used to solve the Traveling Salesman Problem 

require an initial solution to start from. The quality of this first solution 

(understanding quality as the proximity to the optimal solution) can save us 

many hours of testing our algorithms. A very well known algorithm for finding 

this first solution is the Christofides Algorithm (explained in detail below). 

This algorithm guarantees that its solutions will be within a factor of 3/2 of 

the optimal solution, so often times its solution is good enough and no further 

improvement is performed with local search algorithms.

Christofides Algorithm

One method for solving this problem is the Christofides algorithm. Step-by-step 

instructions for this method are as follows:

https://en.wikipedia.org/wiki/Christofides_algorithm
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The example aims to apply Christofides Algorithm to find the shortest path of visiting 73 retail stores in Minnesota. 
Create a minimum spanning tree T (right) of Complete Graph G (left)
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Vertices with odd degree O (left) and subgraph G’ (right) of G using only the vertices of O
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Find a minimum-weight perfect matching M  (above) in the induced subgraph given by the vertices from O.

Find a minimum-weight perfect matching M  (above) in the induced subgraph given by the vertices from O.
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Form an Eulerian circuit E (above) in H.

WWMake the circuit found in previous step into a Hamiltonian circuit by skipping repeated vertices (shortcutting)
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Explore our notebook for further details on the 

Christofides Algorithm and alternative methods 

for solving the Traveling Salesman Problem

https://github.com/CartoDB/data-science-book/blob/master/Chapter%203/Travelling%20Salesman%20Problem.ipynb
https://github.com/CartoDB/data-science-book/blob/master/Chapter%203/Travelling%20Salesman%20Problem.ipynb
https://github.com/CartoDB/data-science-book/blob/master/Chapter%203/Travelling%20Salesman%20Problem.ipynb
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Chapter 5: Continue Your 
Spatial Education

The need for spatial data science professionals and practitioners across 

governments, organizations, companies, and cities is growing as these 

institutions continue to further recognize the importance of deriving new 

insights from growing location data assets. To meet this demand, many 

programs have sprung up, from higher education to tech bootcamps, that seek 

to train the next generation of spatial experts

The University of Chicago 

The Center for Spatial Data Science  

 

 

- Undergraduate Study  

- Post-grad study  

- Research

The University of Southern 
California 

Spatial Sciences Institute  

 

- Undergraduate Study 

- Post-grad study 

- Research

https://spatial.uchicago.edu
https://spatial.usc.edu/
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The University of 
Wisconsin-Madison 

Geospatial Data Science Lab  

 

 

- Post-grad study 

- Research

The University of Liverpool 

Geographic Data Science Lab  

 

 

- Post-grad study 

- Research

University College London 

CASA: The Bartlett Centre for 

Advanced Spatial Analysis 

 

 

- Post-grad study 

- Research

https://geods.geography.wisc.edu/
https://www.liverpool.ac.uk/geographic-data-science/
https://www.ucl.ac.uk/bartlett/casa/
https://www.ucl.ac.uk/bartlett/casa/
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Arizona State University 

SPARC: Spatial Analysis Research 

Center 

 

 

- Undergraduate Study 

- Post-grad study 

- Research

The University of Oregon 

Spatial Cognition, Computation, and 

Complexity Lab 

 

 

- Undergraduate Study 

- Research

The Pratt Institute 

SAVI: The Spatial Analysis and 

Visualization Initiative 

 

 

- Post-grad study 

- Research

https://sgsup.asu.edu/SPARC
https://sgsup.asu.edu/SPARC
https://blogs.uoregon.edu/s3clab/
https://blogs.uoregon.edu/s3clab/
https://commons.pratt.edu/savi/
https://commons.pratt.edu/savi/
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Links for helpful packages and tools:

• Geopandas - http://geopandas.org/

• cartoframes==1.0b1 - https://carto.com/developers/cartoframes/

• Carto-print - https://github.com/CartoDB/carto-print

• Matplotlib - https://matplotlib.org/

• Seaborn - https://seaborn.pydata.org/

• Pandas - https://pandas.pydata.org/

• Dask - https://dask.org/

• netCDF4 - https://pypi.org/project/netCDF4/

• Jupyter - https://jupyter.org/

• NumPy - https://www.numpy.org/

• SciPy - https://www.scipy.org/

• Sklearn - https://pypi.org/project/sklearn/

• Shapely - https://pypi.org/project/Shapely/

• Fiona - https://pypi.org/project/Fiona/

• Scikit-gstat - https://scikit-gstat.readthedocs.io/en/latest/

• Pyproj - https://pypi.org/project/pyproj/

• Utm - https://pypi.org/project/utm/

• PySAL - https://pysal.org/

• Pointpats - https://pypi.org/project/pointpats/

• Rpy2 - https://pypi.org/project/rpy2/

• Ipywidgets - https://ipywidgets.readthedocs.io/en/latest/

• GeoPy - https://github.com/geopy/geopy

• Simanneal - https://pypi.org/project/simanneal/
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