Published on *METEO 300: Fundamentals of Atmospheric Science* (https://www.e-education.psu.edu/meteo300)

The study of kinematics provides a physical and quantitative *description* of our atmospheric motion, while the study of dynamics provides the physical and quantitative *cause-and-effect* for this motion. This lesson discusses kinematics.

Credit: NASA Global Hydrology and Climate Center [1]

When we look at weather in motion from a satellite, we see very complicated swirls and stretching that evolve over time. We can see the same types of motions on a much smaller scale by observing swirling leaves. These complex motions can be ascribed to combinations of just five different types of atmospheric motion. Quantifying these motions with mathematics, without assigning a cause to the motion, is the focus of this lesson on kinematics.

By the end of this lesson, you should be able to:

- identify regions of convergence, divergence, positive vorticity, and negative vorticity on a weather map
- calculate the strength of the different flow types from observations
- relate vertical motion to horizontal convergence and divergence

If you have any questions, please post them to the Course Questions discussion forum. I will check that discussion forum daily to respond. While you are there, feel free to post your own responses if you, too, are able to help out a classmate.

**Streamlines** are lines that are everywhere parallel to the velocity vectors at a fixed time. They consider the direction of the velocity but not the speed. Sometimes more streamlines are drawn to indicate greater speed, but this is not usually done. Streamlines generally change from one time to the next, giving us “snapshots” of the motion of air parcels. For maps of wind observations for a fixed time, we often look at streamlines. On a map of streamlines, you will see that the lines aren’t always straight and don’t always have the same spacing. **Confluence** is when streamlines come together. **Diffluence** is when they move apart.

Credit: Creative Commons via Fernanada Viegas and Marten Wattenberg

**Trajectories** are the actual paths of the moving air parcels, and indicate both the direction and velocity of air parcels over time. **Convergence** is when the velocity of the air slows down in the direction of the streamline. **Divergence** is when the velocity of the air speeds up in the direction of the streamline. We will talk more about convergence/divergence later, but for now, you should understand that convergence/divergence come from *changes in velocity* while confluence/diffluence come from *changes in spacing between streamlines*.

Credit: NOAA ARL [3]

Confluence/diffluence and convergence/divergence are illustrated in the figure below:

Credit: H.N. Shirer

Here is another chance to earn **one point of extra credit**: **Picture of the Week**!

- You take a picture of some atmospheric phenomenon–a cloud, wind-blown dust, precipitation, haze, winds blowing different directions–anything that strikes you as interesting.
- Add a short description of the processes that you think are causing your observation. A Word file is a good format for submission.
- Use your name as the name of the file. Upload it to the
**Picture of the Week Dropbox**in this week's lesson module. To be eligible for the week, your picture must be submitted by 23:59 UT on Sunday of each week. - I will be the sole judge of the weekly winners. A student can win up to three times.
- There will be a Picture of the Week dropbox each week through Lesson 11. Keep submitting entries!

Credit: NOAA

The water vapor image from the GOES 13 satellite, above, indicates different air masses over the United States. As we know from Lesson 7, the water vapor image actually shows the top of a column of water vapor that strongly absorbs in the water vapor channel wavelengths, but it is not a bad assumption to think that there is a solid column of moister air underneath the water vapor layer that is emitting and is observed by the satellite. In a single snapshot, it is not possible to see what happens to the air parcels over time. But if we look at a loop, then we can see the air parcels moving and changing shape as they move.

Visit this website to see a loop [4]. Pick any air parcel with more water vapor in the first frame and then watch it evolve over time. What does it do? Maybe it moves; it spins; it stretches; it shears; it grows. Maybe it does only a few of these things; maybe it does them all.

We can break each air parcel’s complex behavior down into a few basic types of flows and then mathematically describe them. We will just describe these basic motions here and show how they lead to weather.

Credit: W. Brune

Assume that we have an air parcel as in the figure above. We focus on motion in the two horizontal directions to aid in the visualization (and because most motion in the atmosphere is horizontal) but the concepts apply to the vertical direction as well. If the air parcel is moving and does not change its orientation, shape, or size, then it is only undergoing *translation* (see figure below).

Credit: W. Brune

The air parcel can do more than just translate. It can undergo changes relative to translation, and its total motion will then be a combination of translation and relative motion. Let’s suppose that different parts of the air parcel have slightly different velocities. This situation is depicted in the figure below.

Credit: W. Brune, after R. Najjar

If we consider very small differences *dx* and *dy*, then we can write *u* and *v* at point (*x _{o}* +

$$\begin{array}{l}u\left({x}_{o}+dx,{y}_{o}+dy\right)\approx u({x}_{o},{y}_{o})+\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy\hfill \\ v\left({x}_{o}+dx,{y}_{o}+dy\right)\approx v({x}_{o},{y}_{o})+\frac{\partial v}{\partial x}dx+\frac{\partial v}{\partial y}dy\hfill \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}\hfill \\ \text{translationrelativemotion}\hfill \end{array}$$[5]@5@5@+=faaagCart1ev2aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaerbdfwBIjxAHbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hHeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpi0dc9GqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaauaadaqaeeaaaaqaaabbaaaaaaaaIXwyJTgapeGaamyDamaabmaapaqaa8qacaWG4bWdamaaBaaaleaapeGaam4BaaWdaeqaaOWdbiabgUcaRiaadsgacaWG4bGaaiilaiaadMhapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpeGaey4kaSIaamizaiaadMhaaiaawIcacaGLPaaacqGHijYUcaWG1bGaaiikaiaadIhapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpeGaaiilaiaadMhapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpeGaaiykaiabgUcaRmaalaaapaqaa8qacqGHciITcaWG1baapaqaa8qacqGHciITcaWG4baaaiaadsgacaWG4bGaey4kaSYaaSaaa8aabaWdbiabgkGi2kaadwhaa8aabaWdbiabgkGi2kaadMhaaaGaamizaiaadMhaa8aabaWdbiaadAhadaqadaWdaeaapeGaamiEa8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qacqGHRaWkcaWGKbGaamiEaiaacYcacaWG5bWdamaaBaaaleaapeGaam4BaaWdaeqaaOWdbiabgUcaRiaadsgacaWG5baacaGLOaGaayzkaaGaeyisISRaamODaiaacIcacaWG4bWdamaaBaaaleaapeGaam4BaaWdaeqaaOWdbiaacYcacaWG5bWdamaaBaaaleaapeGaam4BaaWdaeqaaOWdbiaacMcacqGHRaWkdaWcaaWdaeaapeGaeyOaIyRaamODaaWdaeaapeGaeyOaIyRaamiEaaaacaWGKbGaamiEaiabgUcaRmaalaaapaqaa8qacqGHciITcaWG2baapaqaa8qacqGHciITcaWG5baaaiaadsgacaWG5baapaqaa8qacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabccacaqGGaGaae4xaiaab+facaqGFbGaae4xaiaab+facaqGFbGaae4xaiaabckacaqGGcGaaeiOaiaabckacaqGFbGaae4xaiaab+facaqGFbGaae4xaiaab+facaqGFbGaae4xaiaab+facaqGFbGaae4xaaWdaeaapeGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGaGaaeiiaiaabccacaqGGaGaaeiDaiaabkhacaqGHbGaaeOBaiaabohacaqGSbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGcGaaeiOaiaabckacaqGYbGaaeyzaiaabYgacaqGHbGaaeiDaiaabMgacaqG2bGaaeyzaiaabckacaqGTbGaae4BaiaabshacaqGPbGaae4Baiaab6gaaaaaaa@FE30@

We see that *u(x _{o},y_{o})* and

There are four gradients represented by the four partial derivatives. Each can be either positive or negative for each partial derivative.

$\frac{\partial u}{\partial x}$ is the following change in velocity in the *x* direction:

$\frac{\partial v}{\partial y}$ is the following change in velocity in the *y* direction:

$\frac{\partial u}{\partial y}$ is the following change in velocity in the *y* direction:

$\frac{\partial v}{\partial x}$ is the following change in velocity in the *x* direction:

Note that a partial derivative is positive if a positive value is becoming more positive or a negative value is becoming less negative. Similarly, a negative partial derivative occurs when a positive value is becoming less positive or a negative value is becoming more negative. Be sure that you have this figured out before you go on.

Watch this video (2:38) for further explanation:

Generally, air velocities change with distance in such a way that more than one partial derivative is different from zero at any time. It turns out that any motion of an air parcel is a combination of five different motions, one being **translation**, which we have already discussed, and four of which can be represented by pairs of partial derivatives of velocity. Of these four, one is a deformation of the air parcel, called **stretching**, which flattens and lengthens the air parcel. A second is another deformation of the air parcel, called **shearing**, which twists the air parcel in both the *x* and *y* directions. A third is pure rotation, called **vorticity**. A fourth enlarges or shrinks the parcel without changing its shape, called **divergence**. Let’s consider each of five types of air motion alone, even though more than one is often occurring for an air parcel.

** Translation** simply moves the air parcel without stretching it, shearing it, rotating, or changing its area. There are no partial derivatives of velocities involved with translation.

For the remaining four cases, * we will provide examples in which the motion (stretching, shearing, vorticity, and divergence) has a positive value*. We could have provided examples in which the motion has negative value, but the conclusions would be the same.

** Stretching deformation** is represented by $\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}$.

Credit: W. Brune

** Shearing deformation** is represented by $\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}$. In this case,

Credit: W. Brune

As the two figures above show, both stretching and shearing deformation cause stretching along the axis of diffluence and contraction along the axis of confluence, with the two axes at right angles to each other. These deformations result in **weather fronts**. In both cases, these motions cause some parts of the air parcel to move away from each other and some parts of the air parcel to move towards each other. The air coming together is called **frontogenesis**.

** Vorticity** is represented by $\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\equiv \zeta $ . Vorticity is special, and because it is special, it is represented by a Greek lower-case letter, zeta (ζ). In this case, the air parcel does not get distorted if $\partial v/\partial x=-\partial u/\partial y$ and does not change area. It simply rotates (see figure below).

Credit: W. Brune

This difference in partial derivatives may look familiar to you.

$$\begin{array}{l}{\overrightarrow{U}}_{H}=\overrightarrow{i}u+\overrightarrow{j}v\text{and}{\overrightarrow{\nabla}}_{H}=\overrightarrow{i}\frac{\partial}{\partial x}+\overrightarrow{j}\frac{\partial}{\partial y}\hfill \\ {\overrightarrow{\nabla}}_{H}\times {\overrightarrow{U}}_{H}=\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\overrightarrow{k}\hfill \\ \zeta =\overrightarrow{k}\xb7\left({\overrightarrow{\nabla}}_{H}\times {\overrightarrow{U}}_{H}\right)\hfill \end{array}$$[5]@5@5@+=faaagCart1ev2aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaerbdfwBIjxAHbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hHeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpi0dc9GqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaauaabaqadeaaaeaaqqaaaaaaaaGySf2yRbWdbiqadwfapaGbaSaapeWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0JabmyAa8aagaWca8qacaWG1bGaey4kaSIabmOAa8aagaWca8qacaWG2bGaaeiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGcGafy4bIe9dayaalaWaaSbaaSqaa8qacaWGibaapaqabaGcpeGaeyypa0JabmyAa8aagaWca8qadaWcaaWdaeaapeGaeyOaIylapaqaa8qacqGHciITcaWG4baaaiabgUcaRiqadQgapaGbaSaapeWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamyEaaaaa8aabaWdbiqbgEGir=aagaWcamaaBaaaleaapeGaamisaaWdaeqaaOWdbiabgEna0kqadwfapaGbaSaapeWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0ZaaeWaa8aabaWdbmaalaaapaqaa8qacqGHciITcaWG2baapaqaa8qacqGHciITcaWG4baaaiabgkHiTmaalaaapaqaa8qacqGHciITcaWG1baapaqaa8qacqGHciITcaWG5baaaaGaayjkaiaawMcaaiqadUgapaGbaSaaaeaapeGaeqOTdONaeyypa0Jabm4Aa8aagaWca8qacqWIpM+zdaqadaWdaeaapeGafy4bIe9dayaalaWaaSbaaSqaa8qacaWGibaapaqabaGcpeGaey41aqRabmyva8aagaWca8qadaWgaaWcbaGaamisaaqabaaakiaawIcacaGLPaaaaaaaaa@7E28@

Vorticity is actually a vector that follows the right-hand rule. Your fingers curve in the direction of the flow and your thumb is the vorticity vector. Here we are discussing only the vertical component of the vorticity. In a right-handed coordinate system, counter-clockwise flow in the *x*-*y* plane will result in your thumb pointing in the positive *z* direction. Hence, vorticity is positive if the rotation is counter-clockwise and is negative if the rotation is clockwise. In the Northern Hemisphere, low-pressure systems are typically characterized by counter-clockwise flow and thus have positive vorticity whereas high-pressure systems are typically characterized by clockwise flow and thus have negative vorticity. The vorticity definition is the same in the Southern Hemisphere (with counter-clockwise flow being positive and clockwise flow being negative), but low-pressure systems usually have clockwise flow and high-pressure systems usually have counterclockwise flow. Vorticity is an important quantity because low- and high-pressure systems are responsible for a lot of weather.

** Divergence** is represented by $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\equiv \delta $ . Divergence is also special, and because it is special, it is represented by a Greek lower-case letter, delta ($\delta $ ). When the divergence is positive, the air parcel grows (i.e., its area increases) (see figure below). If the divergence is negative, then the air parcel shrinks (i.e., its area decreases). Strictly speaking, $\delta $ is the horizontal divergence because it describes a change in parcel area projected onto a horizontal plane. Adding ∂

Credit: W. Brune

The divergence can be written in vector notation:

$$\begin{array}{l}{\overrightarrow{U}}_{H}=\overrightarrow{i}u+\overrightarrow{j}v\text{and}{\overrightarrow{\nabla}}_{H}=\overrightarrow{i}\frac{\partial}{\partial x}+\overrightarrow{j}\frac{\partial}{\partial y}\hfill \\ {\overrightarrow{\nabla}}_{H}\xb7{\overrightarrow{U}}_{H}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\hfill \end{array}$$[5]@5@5@+=faaagCart1ev2aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaerbdfwBIjxAHbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hHeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpi0dc9GqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaauaadaqaceaaaeaaqqaaaaaaaaGySf2yRbWdbiqadwfapaGbaSaapeWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0JabmyAa8aagaWca8qacaWG1bGaey4kaSIabmOAa8aagaWca8qacaWG2bGaaeiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGcGafy4bIe9dayaalaWaaSbaaSqaa8qacaWGibaapaqabaGcpeGaeyypa0JabmyAa8aagaWca8qadaWcaaWdaeaapeGaeyOaIylapaqaa8qacqGHciITcaWG4baaaiabgUcaRiqadQgapaGbaSaapeWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamyEaaaaa8aabaWdbiqbgEGir=aagaWcamaaBaaaleaapeGaamisaaWdaeqaaOWdbiabl+y6NjqadwfapaGbaSaapeWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0ZaaSaaa8aabaWdbiabgkGi2kaadwhaa8aabaWdbiabgkGi2kaadIhaaaGaey4kaSYaaSaaa8aabaWdbiabgkGi2kaadAhaa8aabaWdbiabgkGi2kaadMhaaaaaaaaa@6CB3@

Watch this video (1:56) for further explanation:

We see that divergence is positive when the parcel area grows and is negative when it shrinks. We call growth “divergence” and shrinking “convergence.” We wish to know whether air parcels come together (converge) or spread apart (diverge) or if the parcel area increases with time (divergence) or decreases with time (convergence).

Let’s see how divergence in the horizontal two dimensions is related to area change. We can do a similar analysis that relates divergence in three dimensions to a volume change, but we will stay with the two-dimensional case because it is easier to visualize and also has important applications. Consider a box with dimensions *Δx* and *Δy*. Different parts of the box are moving at different velocities (see figure below).

Credit: W. Brune

The box's area, *A*, is given by:

$$\begin{array}{l}A=\Delta x\text{\hspace{0.17em}}\Delta y\hfill \\ \frac{dA}{dt}=\frac{d(\Delta x\text{\hspace{0.17em}}\Delta y)}{dt}=\Delta x\text{\hspace{0.17em}}\frac{d(\Delta y)}{dt}+\Delta y\frac{d(\Delta x\text{\hspace{0.17em}})}{dt}=\hfill \\ \text{\hspace{1em}}\text{\hspace{1em}}\text{\hspace{1em}}\Delta x\left[v(y+\Delta y)-v(y)\right]+\Delta y\left[u(x+\Delta x)-u(x)\right]\hfill \\ \hfill \\ \text{divideby}A\text{=}\Delta x\text{\hspace{0.17em}}\Delta y\hfill \\ \hfill \\ \frac{1}{A}\frac{dA}{dt}=\frac{v(y+\Delta y)-v(y)}{\Delta y}+\frac{u(x+\Delta x)-u(x)}{\Delta x}\hfill \\ \hfill \\ \text{Let}\Delta y\to \text{0,}\Delta x\to \text{0}\hfill \\ \hfill \\ \frac{1}{A}\frac{dA}{dt}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}={\overrightarrow{\nabla}}_{H}\u2022{\overrightarrow{U}}_{H}\hfill \end{array}$$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWcbaaaaaqaaabbaaaaaaaaIXwyJTgapeGaamyqaiabg2da9iabfs5aejaadIhacaaMc8UaeuiLdqKaamyEaaWdaeaapeWaaSaaa8aabaWdbiaadsgacaWGbbaapaqaa8qacaWGKbGaamiDaaaacqGH9aqpdaWcaaWdaeaapeGaamizaiaacIcacqqHuoarcaWG4bGaaGPaVlabfs5aejaadMhacaGGPaaapaqaa8qacaWGKbGaamiDaaaacqGH9aqpcqqHuoarcaWG4bGaaGPaVpaalaaapaqaa8qacaWGKbGaaiikaiabfs5aejaadMhacaGGPaaapaqaa8qacaWGKbGaamiDaaaacqGHRaWkcqqHuoarcaWG5bWaaSaaa8aabaWdbiaadsgacaGGOaGaeuiLdqKaamiEaiaaykW7caGGPaaapaqaa8qacaWGKbGaamiDaaaacqGH9aqpa8aabaWdbiaaywW7caaMf8UaaGzbVlabfs5aejaadIhadaWadaqaaiaadAhacaGGOaGaamyEaiabgUcaRiabfs5aejaadMhacaGGPaGaeyOeI0IaamODaiaacIcacaWG5bGaaiykaaGaay5waiaaw2faaiabgUcaRiabfs5aejaadMhadaWadaqaaiaadwhacaGGOaGaamiEaiabgUcaRiabfs5aejaadIhacaGGPaGaeyOeI0IaamyDaiaacIcacaWG4bGaaiykaaGaay5waiaaw2faaaWdaeaaaeaapeGaaeizaiaabMgacaqG2bGaaeyAaiaabsgacaqGLbGaaeiOaiaabkgacaqG5bGaaeiOaiaadgeacaqGGcGaaeypaiaabckacqqHuoarcaWG4bGaaGPaVlabfs5aejaadMhaa8aabaaabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGbbaaamaalaaapaqaa8qacaWGKbGaamyqaaWdaeaapeGaamizaiaadshaaaGaeyypa0ZaaSaaa8aabaWdbiaadAhacaGGOaGaamyEaiabgUcaRiabfs5aejaadMhacaGGPaGaeyOeI0IaamODaiaacIcacaWG5bGaaiykaaWdaeaapeGaeuiLdqKaamyEaaaacqGHRaWkdaWcaaWdaeaapeGaamyDaiaacIcacaWG4bGaey4kaSIaeuiLdqKaamiEaiaacMcacqGHsislcaWG1bGaaiikaiaadIhacaGGPaaapaqaa8qacqqHuoarcaWG4baaaaWdaeaaaeaapeGaaeitaiaabwgacaqG0bGaaeiOaiabfs5aejaadMhacqGHsgIRcaqGWaGaaeilaiaabckacqqHuoarcaWG4bGaeyOKH4QaaeimaaWdaeaaaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadgeaaaWaaSaaa8aabaWdbiaadsgacaWGbbaapaqaa8qacaWGKbGaamiDaaaacqGH9aqpdaWcaaWdaeaapeGaeyOaIyRaamyDaaWdaeaapeGaeyOaIyRaamiEaaaacqGHRaWkdaWcaaWdaeaapeGaeyOaIyRaamODaaWdaeaapeGaeyOaIyRaamyEaaaacqGH9aqpcuGHhis0paGbaSaadaWgaaWcbaWdbiaadIeaa8aabeaak8qacqGHIaYTceWGvbWdayaalaWdbmaaBaaaleaacaWGibaabeaaaaaaaa@E7CE@

So we see that the fractional change in the area is equal to the horizontal divergence. Note that the dimension of divergence is time^{–1} and the SI unit is s^{–1}.

We can do this same analysis for motion in three dimensions to get the equation:

$$\frac{1}{V}\frac{dV}{dt}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}={\overrightarrow{\nabla}}_{H}\xb7{\overrightarrow{U}}_{H}+\frac{\partial w}{\partial z}=\overrightarrow{\nabla}\xb7\overrightarrow{U}$$[5]@5@5@+=faaagCart1ev2aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaerbdfwBIjxAHbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hHeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpi0dc9GqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaabbaaaaaaaaIXwyJTgapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadAfaaaWaaSaaa8aabaWdbiaadsgacaWGwbaapaqaa8qacaWGKbGaamiDaaaacqGH9aqpdaWcaaWdaeaapeGaeyOaIyRaamyDaaWdaeaapeGaeyOaIyRaamiEaaaacqGHRaWkdaWcaaWdaeaapeGaeyOaIyRaamODaaWdaeaapeGaeyOaIyRaamyEaaaacqGHRaWkdaWcaaWdaeaapeGaeyOaIyRaam4DaaWdaeaapeGaeyOaIyRaamOEaaaacqGH9aqpcuGHhis0paGbaSaadaWgaaWcbaWdbiaadIeaa8aabeaak8qacqWIpM+zceWGvbWdayaalaWdbmaaBaaaleaacaWGibaabeaakiabgUcaRmaalaaapaqaa8qacqGHciITcaWG3baapaqaa8qacqGHciITcaWG6baaaiabg2da9iqbgEGir=aagaWca8qacqWIpM+zceWGvbWdayaalaaaaa@62C1@

where *V* is the parcel volume. Thus, the 3-D divergence is just the fractional rate of change of an air parcel’s volume.

Suppose that an air parcel has an area of 10,000 km^{2} and it is growing by 1 km^{2} each second. What is its divergence?

$\frac{\Delta A}{\Delta t}=1{\text{km}}^{2}{\text{s}}^{-1}$ , so $\left(\frac{1}{A}\right)\left(\frac{\Delta A}{\Delta t}\right)=\left(\frac{1}{{10}^{4}}{\text{km}}^{2}\right)\left(1{\text{km}}^{2}{\text{s}}^{-1}\right)={10}^{-4}{\text{s}}^{-1}$ .

Suppose that an air parcel has a area of 10,000 km^{2} and has a divergence of –10^{–4} s^{–1}. Is the air parcel growing or shrinking?

$\text{divergence=}\delta =\left(\frac{1}{A}\right)\left(\frac{\Delta A}{\Delta t}\right)$ , or $\frac{\Delta A}{A}=\delta \Delta t=\left(-{10}^{-4}{\text{s}}^{-1}\right)\left(1\text{s}\right)=-{10}^{-4}$ . The air parcel is shrinking.

Check out this video (1:33) for further explanation:

- Find
**Practice Quiz 9-1**in Canvas. You may complete this practice quiz as many times as you want. It is not graded, but it allows you to check your level of preparedness before taking the graded quiz. - When you feel you are ready, take
**Quiz 9-1**. You will be allowed to take this quiz only**once**. Good luck!

Credit: Unisys

Our goal here is to relate horizontal convergence and divergence to vertical motion. If vertical motion is upward, then the uplifted air will cool, clouds will form, and it might rain or snow. If vertical motion is downward, then the downwelling air will warm by adiabatic descent, clouds will evaporate, and it will become clear.

To find out what will happen, we need to go back to a fundamental law of mass conservation [6], which we will derive in detail in Lesson 10. Here we simply quote the result:

$$\frac{1}{\rho}\frac{D\rho}{Dt}+\overrightarrow{\nabla}\u2022\overrightarrow{U}=0$$

where $\rho $ is the density and *D/Dt* is the total derivative.

For divergence,$\overrightarrow{\nabla}\u2022\overrightarrow{U}>0$ , volume increases and density must decrease to conserve mass.

For convergence,$\overrightarrow{\nabla}\u2022\overrightarrow{U}<0$ , volume decreases and density must increase to conserve mass.

However, to good approximation, density does not change with time for any given horizontal surface. Sure, density decreases exponentially with height, but for each height level, the density at that level is fairly constant.

So, to a good approximation:

$\overrightarrow{\nabla}\u2022\overrightarrow{U}=0$[5]@5@5@+=faaagCart1ev2aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaerbdfwBIjxAHbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hHeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpi0dc9GqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaabbaaaaaaaaIXwyJTgapeGafy4bIe9dayaalaWdbiabgkci3kqadwfapaGbaSaapeGaeyypa0JaaGimaaaa@3C71@

and because we can separate out the horizontal and vertical components of divergence:

$$\overrightarrow{\nabla}\u2022\overrightarrow{U}={\overrightarrow{\nabla}}_{H}\u2022{\overrightarrow{U}}_{H}+\frac{\partial w}{\partial z}$$[5]@5@5@+=faaagCart1ev2aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaerbdfwBIjxAHbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hHeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpi0dc9GqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaabbaaaaaaaaIXwyJTgapeGafy4bIe9dayaalaWdbiaackciceWGvbWdayaalaWdbiabg2da9iqbgEGir=aagaWcamaaBaaaleaapeGaamisaaWdaeqaaOWdbiaackciceWGvbWdayaalaWdbmaaBaaaleaacaWGibaabeaakiabgUcaRmaalaaapaqaa8qacqGHciITcaWG3baapaqaa8qacqGHciITcaWG6baaaaaa@469C@

we see that:

$${\overrightarrow{\nabla}}_{H}\u2022{\overrightarrow{U}}_{H}+\frac{\partial w}{\partial z}=0,\text{or}\frac{\partial w}{\partial z}=-{\overrightarrow{\nabla}}_{H}\u2022{\overrightarrow{U}}_{H}$$[5]@5@5@+=faaagCart1ev2aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaerbdfwBIjxAHbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hHeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpi0dc9GqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaabbaaaaaaaaIXwyJTgapeGafy4bIe9dayaalaWaaSbaaSqaa8qacaWGibaapaqabaGcpeGaaiOiGiqadwfapaGbaSaapeWaaSbaaSqaaiaadIeaaeqaaOGaey4kaSIaaiiOamaalaaapaqaa8qacqGHciITcaWG3baapaqaa8qacqGHciITcaWG6baaaiabg2da9iaaicdacaGGSaGaaiiOaiaabckacaqGGaGaaeiiaiaabccacaqGVbGaaeOCaiaabccacaqGGaGaaeiiaiaabccacaGGGcGaaiiOamaalaaapaqaa8qacqGHciITcaWG3baapaqaa8qacqGHciITcaWG6baaaiabg2da9iaacckacqGHsislcuGHhis0paGbaSaadaWgaaWcbaWdbiaadIeaa8aabeaak8qacaGGIaIabmyva8aagaWca8qadaWgaaWcbaGaamisaaqabaaaaa@5E5C@

Thus, horizontal divergence is compensated by vertical convergence and horizontal convergence is compensated by vertical divergence.

${\overrightarrow{\nabla}}_{H}\u2022{\overrightarrow{U}}_{H}>0\text{means}\frac{\partial w}{\partial z}0$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqqaaaaaaaaGySf2yRbWdbiqbgEGir=aagaWcamaaBaaaleaapeGaamisaaWdaeqaaOWdbiaackciceWGvbWdayaalaWdbmaaBaaaleaacaWGibaabeaakiabg6da+iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGTbGaaeyzaiaabggacaqGUbGaae4CaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiamaalaaapaqaa8qacqGHciITcaWG3baapaqaa8qacqGHciITcaWG6baaaiabgYda8iaaicdaaaa@4E28@

Horizontal divergence gives a *decrease* in vertical velocity with height.

${\overrightarrow{\nabla}}_{H}\u2022{\overrightarrow{U}}_{H}<0\text{means}\frac{\partial w}{\partial z}0$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqqaaaaaaaaGySf2yRbWdbiqbgEGir=aagaWcamaaBaaaleaapeGaamisaaWdaeqaaOWdbiaackciceWGvbWdayaalaWdbmaaBaaaleaacaWGibaabeaakiabgYda8iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGTbGaaeyzaiaabggacaqGUbGaae4CaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiamaalaaapaqaa8qacqGHciITcaWG3baapaqaa8qacqGHciITcaWG6baaaiabg6da+iaaicdaaaa@4E28@

Horizontal convergence gives an *increase* in vertical velocity with height.

Now, in the troposphere, the vertical velocity is close to zero (*w *~ 0) at two altitudes. The first is Earth’s surface, which forms a solid boundary that stops the vertical wind. The second is the tropopause, above which the rapid increase in stratospheric potential temperature strongly inhibits vertical motion from the troposphere (see two figures below), so much so, that we can say that the vertical wind must be ~ 0 at the tropopause.

Credit: H.N. Shirer

Credit: H.N. Shirer

These processes can be summarized in the following table:

plane | process | surface area change | ∂w/∂z |
w |
---|---|---|---|---|

surface | convergence | decrease | + | up |

surface | divergence | increase | – | down |

aloft | convergence | decrease | + | down |

aloft | divergence | increase | – | up |

Let’s now consider the effect that divergence/convergence aloft has on surface convergence/divergence (see figure below).

Divergence aloft is associated with rising air throughout the troposphere, which is associated with low pressure and convergence at the surface.

Convergence aloft is associated with sinking air throughout the troposphere, which is associated with high pressure at the surface and thus divergence at the surface.

So, starting at the surface, the vertical velocity becomes more positive with height when there is surface convergence, reaches some maximum vertical velocity, and then becomes less positive with height again toward the divergence aloft.

Similarly, starting again at the surface, the vertical velocity becomes more negative with height when there is surface divergence, reaches some maximum negative velocity, and then becomes less negative with height again near convergence aloft.

Credit: H.N. Shirer

Now watch this video (3:52) on horizontal divergence:

Credit: Unisys

Credit: NOAA.

We have shown that convergence and divergence aloft near the tropopause is related to surface highs and lows. Now it's your turn to find some examples. Go to a source of information about surface pressure and upper-air winds and pick out some regions that show this relationship. One good source is the Penn State e-Wall [7], for which you can use the "U.S. Satellite Overlays."

What are typical values of the vertical velocity caused by convergence or divergence and how do they vary with height? The vertical velocity, *w*, is typically too small to measure by a radiosonde. But we can estimate *w* from the convergence/divergence patterns:

$$\frac{\partial w}{\partial z}=-{\overrightarrow{\nabla}}_{H}\u2022{\overrightarrow{U}}_{H}=-\delta $$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqqaaaaaaaaGySf2yRbWdbmaalaaapaqaa8qacqGHciITcaWG3baapaqaa8qacqGHciITcaWG6baaaiabg2da9iaacckacqGHsislcuGHhis0paGbaSaadaWgaaWcbaWdbiaadIeaa8aabeaak8qacaGGIaIabmyva8aagaWcamaaBaaaleaapeGaamisaaWdaeqaaOGaeyypa0JaeyOeI0IaeqiTdqgaaa@451F@

Note that this equation just gives the derivative of the vertical velocity, not the vertical velocity itself. So to find the vertical velocity, we must integrate both sides of the equation over height, *z*.

Integrate this equation from the surface (*z *= 0) to some height *z*:

$$\underset{0}{\overset{z}{{{{\displaystyle \int}}^{\text{}}}^{\text{}}}}\frac{\partial w}{\partial z\text{'}}dz\text{'}=-\underset{0}{\overset{z}{{{{\displaystyle \int}}^{\text{}}}^{\text{}}}}\delta dz\text{'}$$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfWaqaamaavacabeWcbeqaaiaaygW7a0qaaabbaaaaaaaaIXwyJTgapeGaey4kIipaaOWdamaaCaaaleqabaWdbiaaygW7aaaapaqaa8qacaaIWaaapaqaa8qacaWG6baaaOWaaSaaa8aabaWdbiabgkGi2kaadEhaa8aabaWdbiabgkGi2kaadQhacaGGNaaaaiaadsgacaWG6bGaai4jaiabg2da9iaacckacqGHsislpaWaaCbmaeaadaqfGaqabSqabeaacaaMb8oaneaapeGaey4kIipaaOWdamaaCaaaleqabaWdbiaaygW7aaaapaqaa8qacaaIWaaapaqaa8qacaWG6baaaOGaeqiTdqMaaiiOaiaadsgacaWG6bGaai4jaaaa@5436@

$$w\left(z\right)=-\underset{0}{\overset{\mathrm{z}}{{{{\displaystyle \int}}^{\text{}}}^{\text{}}}}\delta dz\text{'}$$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqqaaaaaaaaGySf2yRbWdbiaadEhadaqadaWdaeaapeGaamOEaaGaayjkaiaawMcaaiabg2da9iaacckacqGHsislpaWaaCbmaeaadaqfGaqabSqabeaacaaMb8oaneaapeGaey4kIipaaOWdamaaCaaaleqabaWdbiaaygW7aaaapaqaa8qacaWG6baapaqaa8qacaaIWaaaaOGaeqiTdqMaaiiOaiaadsgacaWG6bGaai4jaaaa@47AD@

where we have assumed that *w*(0) is equal to zero, which is true if the surface is horizontal. Equation [9.6] gives the **kinematic vertical velocity**.

To a good approximation, it has been determined that divergence/convergence for horizontal flow at large scales (e.g., synoptic scales, ~1000 km) varies linearly with altitude.

$$\delta ={\delta}_{s}+bz$$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqqaaaaaaaaGySf2yRbWdbiabes7aKjabg2da9iabes7aK9aadaWgaaWcbaWdbiaadohaa8aabeaak8qacqGHRaWkcaWGIbGaamOEaaaa@3C23@

where *δ _{s}* is the surface divergence and

$$w\left(z\right)=-\underset{0}{\overset{\mathrm{z}}{{{{\displaystyle \int}}^{\text{}}}^{\text{}}}}\delta d{z}^{\prime}=-{\delta}_{s}z-\frac{1}{2}b{z}^{2}$$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqqaaaaaaaaGySf2yRbWdbiaadEhadaqadaWdaeaapeGaamOEaaGaayjkaiaawMcaaiabg2da9iaacckacqGHsislpaWaaCbmaeaadaqfGaqabSqabeaacaaMb8oaneaapeGaey4kIipaaOWdamaaCaaaleqabaWdbiaaygW7aaaapaqaa8qacaWG6baapaqaa8qacaaIWaaaaOWdaiabes7aK9qacaGGGcGaamizaiqadQhapaGbauaapeGaeyypa0JaaiiOaiabgkHiT8aacqaH0oazdaWgaaWcbaWdbiaadohaa8aabeaak8qacaWG6bGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamOyaiaadQhapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@5413@

The trick is to find *b* using some other information. To find *b*, note that the derivative $\frac{\partial w}{\partial z}$ must equal 0 at some level because *w* must be 0 at both Earth's surface and the tropopause while, in general, *w* is non-zero elsewhere. If, for example, the derivative is negative near Earth's surface, it must become positive at the tropopause in order for *w* to go to zero at the tropopause. Therefore, at some level in between being negative in the lower troposphere and positive in the upper troposphere, the derivative must be zero. We call this level the **level of nondivergence**, *z*_{LND}, and can use it to find an expression for *w* as a function of *z* by setting the divergence equal to zero in Equation [9.7]:_{ }

$$0=-{\delta}_{s}-b\text{\hspace{0.17em}}{z}_{LND},\text{or}b=-\frac{{\delta}_{s}}{{z}_{LND}}$$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqqaaaaaaaaGySf2yRbWdbiaaicdacqGH9aqpcqGHsislcqaH0oazpaWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaeyOeI0IaamOyaiaaykW7caWG6bWdamaaBaaaleaapeGaamitaiaad6eacaWGebaapaqabaGcpeGaaiilaiaacckacaGGGcGaaeiOaiaabckacaqGGcGaaeiOaiaab+gacaqGYbGaaeiOaiaabckacaqGGcGaaeiOaiaacckacaGGGcGaamOyaiabg2da9iabgkHiTmaalaaapaqaa8qacqaH0oazpaWaaSbaaSqaa8qacaWGZbaapaqabaaakeaapeGaamOEa8aadaWgaaWcbaWdbiaadYeacaWGobGaamiraaWdaeqaaaaaaaa@5ABB@

$$w\left(z\right)=-{\delta}_{s}z+\frac{{\delta}_{s}}{2{z}_{LND}}{z}^{2}$$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqqaaaaaaaaGySf2yRbWdbiaadEhadaqadaWdaeaapeGaamOEaaGaayjkaiaawMcaaiabg2da9iabgkHiTiabes7aK9aadaWgaaWcbaWdbiaadohaa8aabeaak8qacaWG6bGaey4kaSYaaSaaa8aabaWdbiabes7aK9aadaWgaaWcbaWdbiaadohaa8aabeaaaOqaa8qacaaIYaGaamOEa8aadaWgaaWcbaWdbiaadYeacaWGobGaamiraaWdaeqaaaaak8qacaWG6bWdamaaCaaaleqabaWdbiaaikdaaaaaaa@480A@

The large-scale surface divergence typically has a value of 10^{–5} s^{–1}. The large-scale level of nondivergence is typically about 5000 m. So, a typical value for *b* is:

$$b=-\frac{{\delta}_{s}}{{z}_{LND}}=-\frac{{10}^{-5}\text{\hspace{0.17em}}{\text{s}}^{-\text{1}}}{5000\text{\hspace{0.17em}}\text{m}}=-2\times {10}^{-9}{\text{m}}^{-\text{1}}{\text{s}}^{-\text{1}}$$[5]@5@5@+=faaahmart1ev3aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=ribbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqqaaaaaaaaGySf2yRbWdbiaadkgacqGH9aqpcqGHsisldaWcaaWdaeaacqaH0oazdaWgaaWcbaWdbiaadohaa8aabeaaaOqaa8qacaWG6bWdamaaBaaaleaapeGaamitaiaad6eacaWGebaapaqabaaaaOWdbiabg2da9iabgkHiTmaalaaapaqaa8qacaaIXaGaaGima8aadaahaaWcbeqaa8qacqGHsislcaaI1aaaaOGaaGPaVlaabohapaWaaWbaaSqabeaapeGaeyOeI0IaaeymaaaaaOWdaeaapeGaaGynaiaaicdacaaIWaGaaGimaiaaykW7caqGTbaaaiabg2da9iabgkHiTiaaikdacqGHxdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qacqGHsislcaaI5aaaaOGaaiiOaiaab2gapaWaaWbaaSqabeaapeGaeyOeI0IaaeymaaaakiaabohapaWaaWbaaSqabeaapeGaeyOeI0Iaaeymaaaaaaa@5C41@

So, for typical large-scale surface divergence:

$$w\left(z\right)=\left(-{10}^{-5}{\text{s}}^{-1}\right)z+\left({10}^{-9}{\text{m}}^{-1}{\text{s}}^{-1}\right){z}^{2}$$[5]@5@5@+=faaagCart1ev2aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaerbdfwBIjxAHbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hHeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpi0dc9GqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaabbaaaaaaaaIXwyJTgapeGaam4Damaabmaapaqaa8qacaWG6baacaGLOaGaayzkaaGaeyypa0JaaiiOamaabmaabaGaeyOeI0IaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaGynaaaak8aacaqGGaGaae4CamaaCaaaleqabaWdbiabgkHiTiaaigdaaaaakiaawIcacaGLPaaacaWG6bGaey4kaSYaaeWaaeaacaaIXaGaaGima8aadaahaaWcbeqaa8qacqGHsislcaaI5aaaaOWdaiaabccacaqGTbWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaak8aacaqGGaGaae4CamaaCaaaleqabaWdbiabgkHiTiaaigdaaaaakiaawIcacaGLPaaacaWG6bWdamaaCaaaleqabaWdbiaaikdaaaaaaa@55CF@

At $z\text{}=\text{}{z}_{LND}=5000\text{m},w({z}_{LND})=-2.5{\text{cms}}^{-1}=\left(-2.5\times {10}^{-5}{\text{kms}}^{-1}\right)\left(86400{\text{sday}}^{-1}\right)=\text{}-2.2{\text{kmday}}^{-1}$[5]@5@5@+=faaagCart1ev2aaaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCaerbdfwBIjxAHbqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hHeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpi0dc9GqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaabbaaaaaaaaIXwyJTgapeGaamOEaiaabckacqGH9aqpcaqGGcGaamOEa8aadaWgaaWcbaWdbiaadYeacaWGobGaamiraaWdaeqaaOWdbiaacckacqGH9aqpcaGGGcGaaGynaiaaicdacaaIWaGaaGimaiaabccacaqGTbGaaiilaiaacckacaWG3bGaaiikaiaadQhapaWaaSbaaSqaa8qacaWGmbGaamOtaiaadseaa8aabeaak8qacaGGPaGaaiiOaiabg2da9iabgkHiTiaaikdacaGGUaGaaGynaiaabckacaqGJbGaaeyBaiaabckacaqGZbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGccqGH9aqpdaqadaqaaiabgkHiTiaaikdacaGGUaGaaGynaiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHiTiaaiwdaaaGccaqGGcGaae4Aaiaab2gacaqGGcGaae4Ca8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaWaaeWaaeaacaaI4aGaaGOnaiaaisdacaaIWaGaaGimaiaabckacaqGZbGaaeiOaiaabsgacaqGHbGaaeyEa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaGaeyypa0JaaeiOaiabgkHiTiaaikdacaGGUaGaaGOmaiaabckacaqGRbGaaeyBaiaabckacaqGKbGaaeyyaiaabMhapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaaaaa@886C@ (see figure below).

The result is that *w* is only a few cm s^{–1}. In a day, the air mass can rise or fall only a few kilometers. Compare this vertical motion dictated by large-scale convergence and divergence to the vertical motion in the core of a powerful thunderstorm (horizontal scale of a few km), where the vertical velocities can be many m s^{–1}. This simple model is called the * bowstring model* because the shape of the vertical velocity looks like a bowstring that is fixed at two points but can vary as a parabola in between.

Credit: W. Brune

- Find
**Practice Quiz 9-2**in Canvas. You may complete this practice quiz as many times as you want. It is not graded, but it allows you to check your level of preparedness before taking the graded quiz. - When you feel you are ready, take
**Quiz 9-2**. You will be allowed to take this quiz only**once**. Good luck!

Kinematics describes the behavior of atmospheric motion but not the cause. Streamlines provide snapshots of that motion and trajectories show where individual air parcels actually go. All atmospheric motion in the horizontal is made up of one or more of five distinct types of motion: translation, stretching deformation, shearing deformation, vorticity, and divergence. Stretching and shearing deformation lead to the formation or the dissolution of surface weather fronts. Vorticity describes the counter-clockwise rotation around low pressure (in the Northern Hemisphere) and clockwise rotation around high pressure (in the Northern Hemisphere) and is thus associated with much of weather. Divergence/convergence aloft leads to vertical winds that connect to convergence/divergence at the surface, and through this mechanism, air motion aloft communicates with air motion at the surface.

This lesson showed the mathematics necessary to quantify all of these processes. So besides identifying streamline confluence/diffluence, you practiced quantifying the five flow types from weather maps of streamlines with wind vectors. Finally, you calculated the vertical wind and its direction (up or down) based on the divergence/convergence of the winds aloft.

You have reached the end of Lesson 9! Double-check that you have completed all of the activities before you begin Lesson 10.

**Links**

[1] https://ghrc.nsstc.nasa.gov/home/

[2] http://hint.fm/wind/

[3] https://ready.arl.noaa.gov/READY_traj_neus.php

[4] http://mp1.met.psu.edu/~fxg1/SAT_US/anim16wv.html

[5] mailto:MathType@MTEF

[6] https://www.e-education.psu.edu/meteo300/node/707

[7] http://mp1.met.psu.edu/~fxg1/ewall.html