The Nature of Geographic Information

12. Geospatial Competencies and Our Curriculum


A body of knowledge is one way to think about the GIS&T field. Another way is as an industry made up of agencies and firms that produce and consume goods and services, generate sales and (sometimes) profits, and employ people. In 2003, the U.S. Department of Labor (DoL) identified "geospatial technology" as one of 14 "high growth" technology industries, along with biotech, nanotech, and others. However, the DoL also observed that the geospatial technology industry was ill-defined, and poorly understood by the public.

Subsequent efforts by the DoL and other organizations helped to clarify the industry's nature and scope. Following a series of "roundtable" discussions involving industry thought leaders, the Geospatial Information Technology Association (GITA) and the Association of American Geographers (AAG) submitted the following "concensus" definition to DoL in 2006:

The geospatial industry acquires, integrates, manages, analyzes, maps, distributes, and uses geographic, temporal, and spatial information and knowledge. The industry includes basic and applied research, technology development, education, and applications to address the planning, decision making, and operational needs of people and organizations of all types.

In addition to the proposed industry definition, the GITA and AAG report recommended that DoL establish additional occupations in recognition of geospatial industry workforce activities and needs. At the time, the existing geospatial occupations included only Surveyors, Surveying Technicians, Mapping Technicians, and Cartographers and Photogrammetrists. Late in 2009, with input from the GITA, AAG, and other stakeholders, the DoL established six new geospatial occupations: Geospatial Information Scientists and Technologists, Geographic Information Systems Technicians, Remote Sensing Scientists and Technologists, Remote Sensing Technicians, Precision Agriculture Technicians, and Geodetic Surveyors.

Try This!

Investigate the geospatial occupations at the U.S. Department of Labor's "O*Net" database. Enter "geospatial" in the search field named "Occupation Quick Search." Follow links to occupation descriptions. Note the estimates for 2008 employment and employment growth through 2018. Also note that, for some anomalous reason, the keyword "geospatial" is not associated with the occupation "Geodetic Surveyor."

Screen capture of Department of Labor's O-Net site
Figure 1.13.1

Meanwhile, DoL commenced a "competency modeling" initiative for high-growth industries in 2005. Their goal was to help educational institutions like ours meet the demand for qualified technology workers by identifying what workers need to know and be able to do. At DoL, a competency is "the capability to apply or use a set of related knowledge, skills, and abilities required to successfully perform ‘critical work functions’ or tasks in a defined work setting” (Ennis 2008). A competency model is "a collection of competencies that together define successful performance in a particular work setting."

Workforce analysts at DoL began work on a Geospatial Technology Competency Model (GTCM) in 2005. Building on their research, a panel of accomplished practitioners and educators produced a complete draft of the GTCM, which they subsequently revised in response to public comments. Published in June 2010, the GTCM identifies the competencies that characterize successful workers in the geospatial industry. In contrast to GIS&T Body of Knowledge, an academic project meant to define the nature and scope of the field, the GTCM is an industry specification that defines what individual workers and students should aspire to know and learn.

Try This!

Explore the Geospatial Technology Competency Model (GTCM) at the U.S. Department of Labor's Competency Model Clearinghouse. Under "Industry Competency Models," follow the link "Geospatial Technology." There, the pyramid (shown in Figure 1.13.2, below) is an image map which you can click to reveal the various competencies. The complete GTCM is also available as a Word doc and PDF file.

The GTCM specifies several "tiers" of competencies, progressing from general to occupationally specific. Tiers 1 through 3 (the gray and red layers), called Foundation Competencies, specify general workplace behaviors and knowledge that successful workers in most industries exhibit. Tiers 4 and 5 (yellow) include the distinctive technical competencies that characterize a given industry and its three sectors: Positioning and Data Acquisition, Analysis and Modeling, and Programming and Application Development. Above Tier 5 are additional Tiers corresponding to the occupation-specific competencies and requirements that are specified in the occupation descriptions published at O*NET Online and in a Geospatial Management Competency Model that is in development as of January, 2012.

Screen capture of the Department of Labor's GeospatialTechnology Competency Model site
Figure 1.13.2

One way educational institutions and students can use the GTCM is as a guideline for assessing how well curricula align with workforce needs. The Penn State Online GIS program conducted such an assessment in 2011. Results appear in the spreadsheet linked below.

Try This!

Open the attached Excel spreadsheet to see how our Penn State Online GIS curricula address workforce needs identified in the GTCM.

The sheet will open on a cover page. At the bottom of the sheet are tabs that correspond to Tiers 1-5 of the GTCM. Click the tabs to view the worksheet associated with the Tier you want to see.

In each Tier worksheet, rows correspond to the GTCM competencies. Columns correspond to the Penn State Online courses included in the assessment. Courses that are required for most students are highlighted in light blue. Course authors and instructors were asked to state what students actually do in relation to each of the GTCM competencies. Use the scroll bar at the bottom right edge of the sheet to reveal more courses.

Open the attached Flash movie to view a video demonstration of how to navigate the spreadsheet.

By studying this spreadsheet, you'll gain insight about how individual courses, and how the Penn State Online curriculum as a whole, relate to geospatial workforce needs. If you're interested in comparing ours to curricula at other institutions, ask if they've conducted a similar assessment. If they haven't, ask why not.

Finally, don't forget that you can preview much of our online courseware through our Open Educational Resouces initiative.

Penn State logo
This textbook is used as a resource in Penn State's Online Geospatial Education online degree and certificate programs. If this topic is interesting to you and you want to learn more about online GIS and GEOINT education at Penn State, check out our Geospatial Education Program Office.