The Nature of Geographic Information

18. Classifying Landsat Data for the National Land Cover Dataset


The USGS developed one of the first land use/land cover classifications systems designed specifically for use with remotely sensed imagery. The Anderson Land Use/Land Cover Classification system, named for the former Chief Geographer of the USGS who led the team that developed the system, consists of nine land cover categories (urban or built-up; agricultural; range; forest; water; wetland; barren; tundra; and perennial snow and ice), and 37 subcategories (for example, varieties of agricultural land include cropland and pasture; orchards, groves, vineyards, nurseries, and ornamental horticulture; confined feeding operations; and other agricultural land). Image analysts at the U. S. Geological Survey created the USGS Land Use and Land Cover (LULC) data by manually outlining and coding areas on air photos that appeared to have homogeneous land cover that corresponded to one of the Anderson classes.

The LULC data were compiled for use at 1:250,000 and 1:100,000 scales. Analysts drew outlines of land cover polygons onto vertical aerial photographs. Later, the outlines were transferred to transparent film georegistered with small-scale topographic base maps. The small map scales kept the task from taking too long and costing too much, but also forced analysts to generalize the land cover polygons quite a lot. The smallest man-made features encoded in the LULC data are four hectares (ten acres) in size, and at least 200 meters (660 feet) wide at their narrowest point. The smallest non-man-made features are sixteen hectares (40 acres) in size, with a minimum width of 400 meters (1320 feet). Smaller features were aggregated into larger ones. After the land cover polygons were drawn onto paper and georegistered with topographic base maps, they were digitized as vector features, and attributed with land cover codes. A rasterized version of the LULC data was produced later.

For more information, visit the USGS' LULC home page.

The successor to LULC is the USGS's National Land Cover Data (NLCD). Unlike LULC, which originated as a vector data set in which the smallest features are about ten acres in size, NLCD is a raster data set with a spatial resolution of 30 meters (i.e., pixels represent about 900 square meters on the ground) derived from Landsat TM imagery. The steps involved in producing the NLCD include preprocessing, classification, and accuracy assessment, each of which is described briefly below.


The first version of NLCD--NLCD 92--was produced for subsets of ten federal regions that make up the conterminous United States. The primary source data were bands 3, 4, 5, and 7 (visible red, near-infrared, mid-infrared, and thermal infrared) of cloud-free Landsat TM scenes acquired during the spring and fall (when trees are mostly bare of leaves) of 1992. Selected scenes were geometrically and radiometrically corrected, then combined into sub-regional mosaics comprised of no more than 18 scenes. Mosaics were then projected to the same Albers Conic Equal Area projection (with standard parallels at 29.5° and 45.5° North Latitude, and central meridian at 96° West Longitude) based upon the NAD83 horizontal datum.

Image classification

An unsupervised classification algorithm was applied to the preprocessed mosaics to generate 100 spectrally distinct pixel clusters. Using aerial photographs and other references, image analysts at USGS then assigned each cluster to one of the classes in a modified version of the Anderson classification scheme. Considerable interpretation was required, since not all functional classes have unique spectral response patterns.

Table 8.6 Modified Anderson Land Use/Land Cover Classification
Level I Classes Level II Classes
Water 11 Open Water
12 Perennial Ice/Snow
Developed 21 Low Intensity Residential
22 High Intensity Residential
23 Commercial/Industrial/Transportation
Barren 31 Bare Rock/Sand/Clay
32 Quarries/Strip Mines/Gravel Pits
33 Transitional
Forrested Upland 41 Deciduous Forest
42 Evergreen Forest
43 Mixed Forest
Shrubland 51 Shrubland
Non-Natural Woody 61 Orchards/Vineyards/Other
Herbaceous Upland Natural/Semi-natural Vegetation 71 Grasslands/Herbaceous
Herbaceous Planted/Cultivated 81 Pasture/Hay
82 Row Crops
83 Small Grains
84 Fallow
85 Urban/Recreational Grasses
Wetlands 91 Woody Wetlands
92 Emergent Herbaceous Wetlands

Modified Anderson Land Use/Land Cover Classification used for the USGS National Land Cover Dataset.

Accuracy Assessment

The USGS hired private sector vendors to assess the classification accuracy of the NLCD 92 by checking randomly sampled pixels against manually interpreted aerial photographs. Results from the first four completed regions suggested that the likelihood that a given pixel is correctly classified ranges from only 38 to 62 percent. Much of the classification error was found to occur among the Level II classes that make up the various Level I classes, and some classes were much more error-prone than others. USGS encourages users to aggregate the data into 3 x 3 or 5 x 5 pixel blocks (in other words, to decrease spatial resolution from 30 meters to 90 or 150 meters), or to aggregate the 21 Level II classes into the nine Level I classes. Even in the current era of high-resolution satellite imaging and sophisticated image processing techniques, there is still no cheap and easy way to produce detailed, accurate geographic data.

Screenshot of the ArcExplorer window
Figure 8.19.1 An extract from NLCD 92 that corresponds to the same portion of the Bushkill, PA quadrangle mapped in other USGS data files provided with earlier chapters. The data viewer is ESRI's ArcExplorer version 2.
Map legend for National Land Cover Dataset showing Color
Key, RGB Value, and Class Number and name
Figure 8.19.2 Map legend for the National Land Cover Dataset.

For more information about NLCD 92 and its successor, NLCD 2001, visit the Multi-Resolution Land Characteristics Consortium.

Global land cover data

Meanwhile, the U.S. National Geospatial-Intelligence Agency (formerly the National Imagery and Mapping Agency) hired a company called Earthsat (Now MDA Federal) to produce a 120-meter resolution, 13-class land use / land cover data set for the rest of the world. This product, called Geocover LC, is derived from 30-meter Landsat TM imagery from the 1990s and 2000. A team of image analysts assigned 240 clusters produced by unsupervised classification into the thirteen land use/ land cover classes (Barrios, 2001). For more information about Geocover LC, visit MDA Information Systems and GeoCover LC.