The Nature of Geographic Information

3. Low Level Radioactive Waste


According to the U.S. Nuclear Regulatory Commission (2004), LLRW consists of discarded items that have become contaminated with radioactive material or have become radioactive through exposure to neutron radiation. Trash, protective clothing, and used laboratory glassware make up all but about 3 percent of LLRW. These "Class A" wastes remain hazardous less than 100 years. "Class B" wastes, consisting of water purification filters and ion exchange resins used to clean contaminated water at nuclear power plants, remain hazardous up to 300 years. "Class C" wastes, such as metal parts of decommissioned nuclear reactors, constitute less than 1 percent of all LLRW, but remain dangerous for up to 500 years.

The danger of exposure to LLRW varies widely according to the types and concentration of radioactive material contained in the waste. Low level waste containing some radioactive materials used in medical research, for example, is not particularly hazardous unless inhaled or consumed, and a person can stand near it without shielding. On the other hand, exposure to LLRW contaminated by processing water at a reactor can lead to death or an increased risk of cancer (U.S. Nuclear Regulatory Commission, n.d.).

Bar graph showing volume for each year from 1985-1998 (top) and pie graph showing the 1998 volume by disposal facility (bottom), se text description in link below
Figure 9.4.1 Production trends and destinations of low level radioactive waste.
Click Here for Text Alternative for Figure 9.4.1

Figure 9.4.1 shows a bar graph and a pie chart that appear here in table form.Note that Volumes are rounded to the nearest thousand cubic feet and percentages are rounded to the nearest tenth of a percent.

Volume by Year
Year Volume (Thousands of Cubic Feet)
1985 2681
1986 1805
1987 1842
1988 1428
1989 1626
1990 1143
1991 1369
1992 1743
1993 792
1994 859
1995 690
1996 422
1997 319
1998 1419
1998 Volume by Disposal Facility
Facility Name Cubic Feet / Percentage
Envirocare 1080K / 76.1%
Barnwell 194K / 13.7%
Richland 145K / 10.2%
Credit: U.S. Nuclear Regulatory Commission, 2005

Hundreds of nuclear facilities across the country produce LLRW, but only a very few disposal sites are currently willing to store it. Disposal facilities at Clive, Utah; Barnwell, South Carolina; and Richland, Washington accepted over 4,000,000 cubic feet of LLRW in both 2005 and 2006, up from 1,419,000 cubic feet in 1998. By 2008, the volume had dropped to just over 2,000,000 cubic feet (U.S. Nuclear Regulatory Commission, 2011a). Sources include nuclear reactors, industrial users, government sources (other than nuclear weapons sites), and academic and medical facilities. (We have a small nuclear reactor here at Penn State that is used by students in graduate and undergraduate nuclear engineering classes.)