Unsupervised Classification Activity

In this activity you will simulate an unsupervised classification of remotely sensed image data to create a land cover map.

1. Plot the reflectance values.

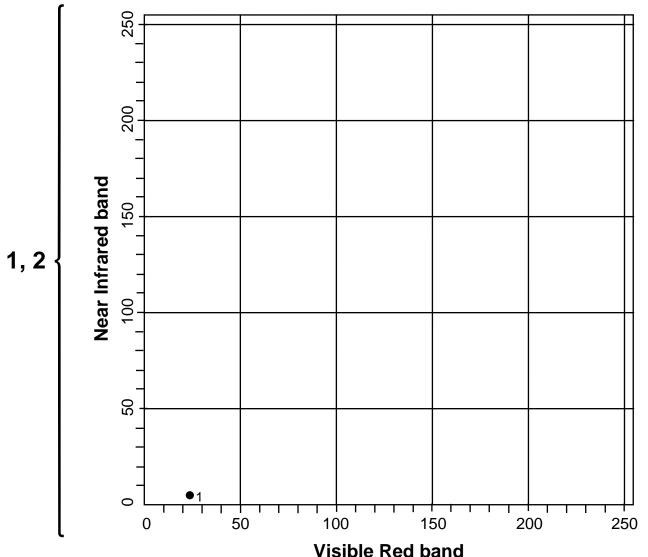
The two grids on the top of the second page represent reflectance values in the visible red and near infrared wavelength bands measured by a remote sensing instrument for a parcel of land. Plot the reflectance values for each pixel on the graph below and write the number of each pixel (1-36) next to its location in the graph. Pixel 1 has been plotted for you (Visible Red band = 22, Near Infrared band = 6).

2. Identify four land cover classes.

Looking at the completed plot from step one, identify and circle four clusters (classes) of pixels. Label these four classes A, B, C, and D.

3. Complete the landcover map grid.

Using the clusters you identified in the previous step, fill in the land cover map grid with the letter that represents the land use class in which each pixel belongs. The result is a classified image.


4. Complete a legend that explains the association.

Using the spectral response data provided on the bottom of the second page, associate each of the four classes with a land use class.

Land Cover Map

_								
	1	2	3	4	5	6		
	7	8	9	10	11	12		
	13	14	15	16	17	18		
	19	20	21	22	23	24		
	25	26	27	28	29	30		
	31	32	33	34	35	36		

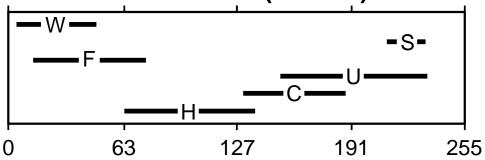
$$\mathbf{4} \left\{ \begin{array}{ll} \mathsf{A} = & \mathsf{B} = \\ \mathsf{C} = & \mathsf{D} = \end{array} \right.$$

Reflectance Values

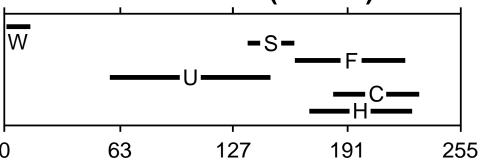
Visible Red band

22	31	³ 18	40	⁵ 54	⁶ 140
14	⁸ 29	⁹ 76	131	80	109
38	93	156	40	63	159
19	20	21 1 = 0	125	²³ 59	164
54	170	158	125	59	104
54 110	170 26 163	27	²⁸ 207	²⁹ 180	104 30 153

Near Infrared band


6	11	³ 14	49	⁵ 147	⁶ 191
⁷ 3	⁸ 4	° 8	100	159	202
7	51	¹⁵ 77	¹⁶ 166	¹⁷ 182	207
¹⁹ 4	70	116	128	170	195
39 31	49	92	²⁸ 76	²⁹ 146	³⁰ 177

Spectral Response Data in Visible Red and Near Infrared for 6 cover types.


W = water F = forest U = urban

C = corn H = hay S = sand

Visible Red (Band 3)

Near Infrared (Band 4)

