Aqueous Complexation Take home 1.1 and RTM setup 1.1 Solution

Take home practice 1: If we add an additional species Ca^{2+} in the closed carbonate system in example 1. We then have the following reactions in additions to those in Example 1:

$$
\begin{align*}
& \mathrm{CaCO}_{3}^{0} \Leftrightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-} \\
& \mathrm{CaHCO}_{3}^{+} \Leftrightarrow \mathrm{Ca}^{2+}+\mathrm{HCO}_{3}^{2-} \tag{0.1}\\
& \mathrm{CaOH}^{+} \Leftrightarrow \mathrm{Ca}^{2+}+\mathrm{OH}^{-}
\end{align*}
$$

Please answer the following questions:

- How many species do we have in total?
- How many dependencies?
- What is the number of primary species?
- What are the choices for primary and secondary species? How many different sets of primary species can you come up with?

Please follow the steps in example 1 to answer these questions.

Solution:

1) How many species in total?

List of species (9): $\mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{CO}_{3}{ }^{0}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{Ca}^{2+}, \mathrm{CaCO}_{3}{ }^{0}, \mathrm{CaHCO}_{3}{ }^{+}, \mathrm{CaOH}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right.$ is typically included implicitly).
2) How many algebraic relationships do we have that define the dependence between activities of different species?

We have 6 instantaneous aqueous reactions, which means that we have 6 dependency through the laws of mass action, as shown in six expressions of equilibrium constant for each reaction.
3) How many primary species do we have and what are they?

Here we have 9 species in total and 6 dependencies. So we should have 9-6 $=3$ primary species. The primary species should be defined so that all other secondary species can be written in terms of the primary species.

- We can choose $\mathrm{H}^{+}, \mathrm{Ca}^{2+}$ and $\mathrm{CO}_{3}{ }^{2-}$ as primary species. See the following table. The species in the top row are primary species. The first left column includes all species.

	H^{+}	$\mathrm{CO}_{3}{ }^{2-}$	Ca^{2+}	$\left(\mathrm{H}_{2} \mathrm{O}\right)$
H^{+}	1	0	0	0
OH^{-}	-1	0	0	1
$\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{0}$	2	1	0	0

$\mathrm{HCO}_{3}{ }^{-}$	1	1	0	0
$\mathrm{CO}_{3}{ }^{2-}$	0	1	0	0
Ca^{2+}	0	0	1	0
$\mathrm{CaCO}_{3}{ }^{0}$	0	1	1	0
$\mathrm{CaHCO}_{3}{ }^{+}$	1	1	1	0
CaOH^{+}	-1	0	1	1

We can write all species in terms of H^{+}and $\mathrm{CO}_{3}{ }^{2-}$:

$$
\begin{aligned}
& \mathrm{H}^{+}=\mathrm{H}^{+} \\
& \mathrm{CO}_{3}^{2-}=\mathrm{CO}_{3}^{2-} \\
& \mathrm{OH}^{-}=\left(\mathrm{H}_{2} \mathrm{O}\right)-\mathrm{H}^{+} \\
& \mathrm{H}_{2} \mathrm{CO}_{3}=2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \\
& \mathrm{HCO}_{3}^{-}=\mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \\
& \mathrm{Ca}^{2+}=\mathrm{Ca}^{2+} \\
& \mathrm{CaCO}_{3}{ }^{2+}=\mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-} \\
& \mathrm{CaHCO}_{3}{ }^{2+}=\mathrm{Ca}^{2+}+\mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \\
& \mathrm{CaOH}^{+}=\mathrm{Ca}^{2+}+\left(\mathrm{H}_{2} \mathrm{O}\right)-\mathrm{H}^{+}
\end{aligned}
$$

Here $\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{CO}_{3}{ }^{0}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{CaCO}_{3}{ }^{0}, \mathrm{CaHCO}_{3}{ }^{+}, \mathrm{CaOH}^{+}$are secondary species.
4) The choice of primary species is not unique. Some possible primary species sets are:
$\left[\mathrm{H}^{+}, \mathrm{HCO}_{3}^{-}, \mathrm{Ca}^{2+}\right]$
$\left[\mathrm{OH}^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{CaCO}_{3}{ }^{0}\right]$

Actually, possible primary sets could be generated based on the principle of BASIS SWITCH (any species in a subset of chemical species could be primary species with certain limitations):
[
$\left(\mathrm{H}^{+} \mathrm{OH}^{-}\right) \quad$ can basis switch unconditionally
$\left(\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{0}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}\right)$
$\left(\mathrm{Ca}^{2+}, \mathrm{CaCO}_{3}{ }^{0}, \mathrm{CaHCO}_{3}{ }^{+}, \mathrm{CaOH}^{+}\right)$
$\mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$) are given
]
can basis switch if $\left(\mathrm{H}^{+} \mathrm{OH}^{-}\right)$is given can basis switch if both $\left(\mathrm{H}^{+} \mathrm{OH}\right)$ and $\left(\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{0}\right.$,

Take home practice 1.1 RTM Set up. We have a closed system with total inorganic carbonate concentration (TIC) equal to $10^{-3} \mathrm{~mol} / \mathrm{L}$ and the total $\mathrm{Ca}\left(\right.$ II) concentration equal to $10^{-4} \mathrm{~mol} / \mathrm{L}$.

1) If the pH is 7.0 , what are the concentrations of all involved species?
2) Calculate the concentrations of all individual species at pH varying from $1 \sim 14$, with pH interval 2. That is, calculate concentrations of all individual species at $\mathrm{pH} 2,4,6,8,10$, 12, 14.
3) Plot TIC, $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{H}^{+}$, and OH^{-}, and $\mathrm{Ca}(\mathrm{II})$-containing sepcies as a function of pH .
4) Observing from the plot, describe the top 2 dominant species under each pH condition.

Solution:

1)

pH	$\mathrm{H}+$	$\mathrm{OH}-$	CO 2	$\mathrm{HCO}-$	CaHCO3 +	$\mathrm{CO3-2}$	$\mathrm{CaCO3}$	$\mathrm{Ca+2}$	$\mathrm{CaOH}+$
7	$1.027 \mathrm{E}-$ 07	$1.041 \mathrm{E}-$ 07	$1.792 \mathrm{E}-$ 04	$8.194 \mathrm{E}-$ 04	$9.261 \mathrm{E}-$ 07	$4.177 \mathrm{E}-$ 07	$5.562 \mathrm{E}-$ 08	$9.902 \mathrm{E}-$ 05	$5.562 \mathrm{E}-$ 08

	H+	$\mathrm{OH}-$	CO2	HCO3-	$\mathrm{CaHCO} 3$	CO3-2	CaCO 3	Ca+2	$\mathrm{CaOH}+$
2	$\begin{aligned} & \hline 1.074 \mathrm{E} \\ & -02 \end{aligned}$	1.097E-12	$\begin{array}{\|l} \hline 1.000 \mathrm{E}- \\ 03 \end{array}$	$\begin{aligned} & 4.811 \mathrm{E}- \\ & 08 \end{aligned}$	$\begin{aligned} & \hline 4.496 \mathrm{E}- \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 2.846 \mathrm{E}- \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.569 \mathrm{E}- \\ & 17 \end{aligned}$	$\begin{aligned} & 1.000 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 1.317 \mathrm{E} \\ & -15 \end{aligned}$
4	$\begin{aligned} & \hline 1.018 \mathrm{E} \\ & -04 \end{aligned}$	$1.031 \mathrm{E}-10$	$\begin{aligned} & 9.955 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 4.509 \mathrm{E}- \\ & 06 \end{aligned}$	$\begin{array}{\|l\|} \hline 5.349 \mathrm{E}- \\ 09 \end{array}$	$\begin{aligned} & \text { 2.233E- } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 3.243 \mathrm{E}- \\ & 13 \end{aligned}$	$\begin{aligned} & \text { 9.999E- } \\ & 05 \end{aligned}$	$\begin{aligned} & \hline 3.243 E \\ & -13 \end{aligned}$
6	$\begin{aligned} & \hline 1.021 \mathrm{E} \\ & -06 \end{aligned}$	1.034E-08	$\begin{array}{\|l} \hline 6.873 \mathrm{E}- \\ 04 \end{array}$	$\begin{aligned} & \hline 3.123 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 3.643 \mathrm{E}- \\ & 07 \end{aligned}$	$\begin{aligned} & \hline 1.562 \mathrm{E}- \\ & 08 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2.202E- } \\ & 09 \end{aligned}$	$\begin{aligned} & \text { 9.963E- } \\ & 05 \end{aligned}$	$\begin{aligned} & \hline 2.202 \mathrm{E} \\ & -09 \end{aligned}$
8	$\begin{aligned} & \hline 1.029 E \\ & -08 \end{aligned}$	1.043E-06	$\begin{array}{\|l\|} \hline 2.122 \mathrm{E}- \\ 05 \end{array}$	$\begin{aligned} & 9.721 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 1.083 \mathrm{E}- \\ & 06 \end{aligned}$	$\begin{aligned} & \text { 4.981E- } \\ & 06 \end{aligned}$	$\begin{aligned} & \hline 6.490 \mathrm{E}- \\ & 07 \end{aligned}$	$\begin{aligned} & 9.827 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & \hline 6.490 \mathrm{E} \\ & -07 \end{aligned}$
10	$\begin{aligned} & \hline 1.037 \mathrm{E} \\ & -10 \end{aligned}$	1.052E-04	$\begin{array}{\|l} \hline 1.376 \mathrm{E}- \\ 07 \end{array}$	$\begin{aligned} & \hline 6.360 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{array}{\|l} \hline 4.897 E- \\ 07 \end{array}$	$\begin{aligned} & \hline 3.343 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 2.911 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & \text { 7.030E- } \\ & 05 \end{aligned}$	$\begin{aligned} & 1.041 \mathrm{E} \\ & -07 \end{aligned}$
12	$\begin{aligned} & \hline 1.085 E \\ & -12 \end{aligned}$	1.110E-02	$\begin{array}{\|l\|} \hline 3.171 \mathrm{E}- \\ 11 \end{array}$	$\begin{aligned} & 1.543 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{array}{\|l\|} \hline 7.234 \mathrm{E}- \\ 09 \end{array}$	$\begin{aligned} & \text { 9.437E- } \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 4.087 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & 5.243 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & \hline 6.687 E \\ & -06 \end{aligned}$
14	$\begin{aligned} & \hline 1.336 \mathrm{E} \\ & -14 \end{aligned}$	$\begin{aligned} & 1.659 \mathrm{E}+0 \\ & 0 \end{aligned}$	$\begin{array}{\|l} \hline 7.921 \mathrm{E}- \\ 16 \end{array}$	$\begin{aligned} & \text { 6.242E- } \\ & 08 \end{aligned}$	$\begin{aligned} & \hline 3.055 \mathrm{E}- \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 9.989 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \text { 1.062E- } \\ & 06 \end{aligned}$	$\begin{aligned} & 1.596 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & \hline 8.298 \mathrm{E} \\ & -05 \end{aligned}$

3)

Or

Or

Calcium species

4)

	H+	OH-	CO2	HCO3-	$\mathrm{CaHCO} 3$	CO3-2	CaCO3	Ca+2	$\mathrm{CaOH}+$
2	$\begin{aligned} & \hline 1.074 \mathrm{E} \\ & -02 \end{aligned}$	1.097E-12	$\begin{aligned} & \hline 1.000 \mathrm{E}- \\ & 03 \end{aligned}$	$\begin{aligned} & 4.811 \mathrm{E}- \\ & 08 \end{aligned}$	$\begin{aligned} & \hline 4.496 \mathrm{E}- \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 2.846 \mathrm{E}- \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 2.569 \mathrm{E}- \\ & 17 \end{aligned}$	$\begin{aligned} & 1.000 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 1.317 \mathrm{E} \\ & -15 \end{aligned}$
4	$\begin{aligned} & 1.018 \mathrm{E} \\ & -04 \end{aligned}$	$1.031 \mathrm{E}-10$	$\begin{aligned} & \hline 9.955 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \text { 4.509E- } \\ & 06 \end{aligned}$	$\begin{aligned} & \text { 5.349E- } \\ & 09 \end{aligned}$	$\begin{aligned} & 2.233 \mathrm{E}- \\ & 12 \end{aligned}$	$\begin{aligned} & \text { 3.243E- } \\ & 13 \end{aligned}$	$\begin{aligned} & 9.999 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & 3.243 E \\ & -13 \end{aligned}$
6	$\begin{aligned} & \hline 1.021 \mathrm{E} \\ & -06 \end{aligned}$	$1.034 \mathrm{E}-08$	$\begin{aligned} & \hline 6.873 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & 3.123 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 3.643 \mathrm{E}- \\ & 07 \end{aligned}$	$\begin{aligned} & \hline 1.562 \mathrm{E}- \\ & 08 \end{aligned}$	$\begin{aligned} & \text { 2.202E- } \\ & 09 \end{aligned}$	$\begin{aligned} & 9.963 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & \hline 2.202 \mathrm{E} \\ & -09 \end{aligned}$
8	$\begin{aligned} & 1.029 E \\ & -08 \end{aligned}$	1.043E-06	$\begin{array}{\|l} \hline 2.122 \mathrm{E}- \\ 05 \end{array}$	$\begin{aligned} & \text { 9.721E- } \\ & 04 \end{aligned}$	$\begin{aligned} & 1.083 \mathrm{E}- \\ & 06 \end{aligned}$	$\begin{aligned} & \text { 4.981E- } \\ & 06 \end{aligned}$	$\begin{aligned} & \text { 6.490E- } \\ & 07 \end{aligned}$	$\begin{aligned} & 9.827 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & 6.490 \mathrm{E} \\ & -07 \end{aligned}$
10	$\begin{aligned} & \hline 1.037 \mathrm{E} \\ & -10 \end{aligned}$	1.052E-04	$\begin{aligned} & \hline 1.376 \mathrm{E}- \\ & 07 \end{aligned}$	$\begin{aligned} & \hline 6.360 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 4.897 \mathrm{E}- \\ & 07 \end{aligned}$	$\begin{aligned} & \hline 3.343 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & 2.911 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & \text { 7.030E- } \\ & 05 \end{aligned}$	$\begin{aligned} & \hline 1.041 \mathrm{E} \\ & -07 \end{aligned}$
12	$\begin{aligned} & 1.085 E \\ & -12 \end{aligned}$	1.110E-02	$\begin{aligned} & \text { 3.171E- } \\ & 11 \end{aligned}$	$\begin{aligned} & 1.543 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & 7.234 \mathrm{E}- \\ & 09 \end{aligned}$	$\begin{aligned} & 9.437 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \text { 4.087E- } \\ & 05 \end{aligned}$	$\begin{aligned} & 5.243 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & \text { 6.687E } \\ & -06 \end{aligned}$
14	$\begin{aligned} & \hline 1.336 \mathrm{E} \\ & -14 \end{aligned}$	$\begin{aligned} & 1.659 \mathrm{E}+0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 7.921 \mathrm{E}- \\ & 16 \end{aligned}$	$\begin{aligned} & 6.242 \mathrm{E}- \\ & 08 \end{aligned}$	$\begin{aligned} & \text { 3.055E- } \\ & 12 \end{aligned}$	$\begin{aligned} & 9.989 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{aligned} & \text { 1.062E- } \\ & 06 \end{aligned}$	$\begin{aligned} & 1.596 \mathrm{E}- \\ & 05 \end{aligned}$	$\begin{aligned} & \hline 8.298 \mathrm{E} \\ & -05 \end{aligned}$

Highlighted boxes indicate the dominant species at each pH for carbonate and calcium, respectively.

